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Abstract
We are witnessing an increasing trend towards using Ma-
chine Learning (ML) based prediction systems, spanning
across different application domains, including product rec-
ommendation systems, personal assistant devices, facial
recognition, etc. These applications typically have diverse
requirements in terms of accuracy and response latency, that
can be satisfied by a myriad of ML models. However, the
deployment cost of prediction serving primarily depends
on the type of resources being procured, which by them-
selves are heterogeneous in terms of provisioning latencies
and billing complexity. Thus, it is strenuous for an infer-
ence serving system to choose from this confounding array
of resource types and model types to provide low-latency
and cost-effective inferences. In this work we quantitatively
characterize the cost, accuracy and latency implications of
hosting ML inferences on different public cloud resource of-
ferings. Our evaluation shows that, prior work does not solve
the problem from both dimensions of model and resource
heterogeneity. Hence, to holistically address this problem,
we need to solve the issues that arise from combining both
model and resource heterogeneity towards optimizing for
application constraints. Towards this, we discuss the design
implications of a self-managed inference serving system,
which can optimize for application requirements based on
public cloud resource characteristics.
CCS Concepts: • Computer systems organization →
Real-time system architecture.
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1 Introduction
Sustained advances in ML has fueled the proliferation of
emerging applications such as product recommendation sys-
tems, facial recognition systems, and intelligent personal
assistants [7]. AmongmanyML paradigms, Deep Neural Net-
works (DNNs), owing to their generalization and massively-
parallel nature, has been predominant in making all these
applications pervasive and accessible to developers. A typical
DNN model has two different phases, namely, training and
inference. Training a DNN, which is the process of extracting
and learning the patterns and the features from millions of
sample-data, typically takes a few hours to days. The trained
models can then be used to perform inferences, i.e., the clas-
sification task. Since typical large scale DNNs have millions
of parameters and perform billions of multiplications and
accumulations for executing a single inference, they are typ-
ically hosted as web-services, which are often queried for
predictions. Conventionally, training is much more compute
intensive (compared to an inference), takes many iterations
and hence has been given considerable attention for better
accuracy and convergence time. However, given the preva-
lence and demand of inferences, serving them on public
cloud with a tight bound of latency, throughput and cost is
becoming increasingly more challenging [7]. These inference
queries are typically administered with strict response laten-
cies of under one second [4]. Based on the application needs,
prediction queries require different compute resources, and
have different accuracy, latency, and cost requirements. To
ensure a required accuracy with given latency, applications
have to choose from a confounding array of different types
of models (shown in Figure 1). Therefore, it is non-trivial for
an application to choose the right model that can collectively
optimize for all requirements together.

https://doi.org/10.1145/3429880.3430093
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Unlike accuracy and latency, which depends on the right
model, cost is dictated by the type of deployment used to host
them in a public cloud. The deployment costs differ based
on the provisioning times and longevity of the resource pro-
cured. Typically, these inference serving systems are hosted
using Virtual Machines (VMs), which take a few minutes
to start-up. Due to high start-up latencies, using VMs for
hosting ML services can lead to over-provisioning, espe-
cially during periods of poor workload predictability (flash
crowds) [10]. In stark contrast to VMs, serverless functions
have been made available by cloud providers, which can
spin-up within a few seconds [2]. As we will discuss in this
paper, the cost of using VMs vs. serverless functions highly
depends on the dynamically varying needs of the user query
submission rates. Besides workload arrival rates, there is fur-
ther variability in terms of configuring serverless functions
to meet the end-user demands of latency and cost require-
ments. This is because, serverless functions are billed based
on of number of invocations, compute time and memory
requirement of the function. However, increased memory
allocation leads to faster execution time owing to powerful
compute-core allocation, but exacerbates the billing cost.
Therefore, these apparent deficiencies of choosing the

appropriate resource type and model type for a given user re-
quirement motivates the central question of this work: Does
there exist an optimal resource procurement system which can
balance the goals of diverse user requirements for accuracy,
latency and cost, by efficiently mapping model parameters to
heterogeneous resource specifications? Our preliminary results
suggest that using a combination of VMs and serverless func-
tions could potentially provide a solution to this problem.
As opposed to prior works [5, 10], which try to combine
serverless functions with VMs to hide the start-up latencies
of VMs, our primary interest lies in exploring the different
key aspects to address when hosting DNN-based ML pre-
diction serving systems in public cloud, as given below:
• Diverse Models: How to make the users oblivious of
model selection from the extensive pool of models, for satis-
fying the accuracy, and latency requirements?
•Heterogeneous Public Cloud Resources:What are the
different options available in terms of combining different
VM-based cloud services and serverless functions for a given
user requirement?
• Configuring Resources: From the diverse options, how
to right-size VMs and appropriately configure the serverless
functions to efficiently cater to user specified cost, accuracy
and latency constraint?
• Bring in Tune: Based on the dynamically changing query
arrivals over time, what is the right way to combine model
diversity along with resource heterogeneity without com-
promising the user-specified requirements?

By exploring these key aspects, we envision developing a
self-managed inference-serving system, which can provide
for different diverse needs of applications by leveraging the
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Figure 1. Accuracy and Latency of Different Pretrained Models.
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Figure 2. Comparison of different models under ISO-latency and
ISO-accuracy setup.
heterogeneous resource availability from the public cloud.
Towards this, we make the following key contributions.
1. We comprehensively characterize the cost, accuracy and

latency implications of hosting ML inferences on different
public cloud resource offerings and unravel the suitable
model/resource configurations to meet the cost, latency
and accuracy demands.

2. We quantitatively evaluate prior works [5, 9, 10] which
are geared towards achieving this vision and show that
they still suffer from several issues when trying to solve
the complex problem of combining model and resource
heterogeneity.

3. We propose detailed design choices that can adopted to-
wards designing a self-managed inference-serving system.
In addition, we design a scheme named Paragon on top of
AWS platform, which incorporates some of the proposed
design choices. Our initial results show that Paragon can
reduce cost of hosting ML prediction serving by up to 20%
when compared to the state-of-the-art prior works, for
diverse accuracy and latency constraints.

2 Characterization and Motivation
2.1 Variability across model types

Depending on the accuracy and latency requirements of an
end-user application, multiple models (shown in Figure 1)
might satisfy a given constraint. For example, consider a face-
recognition application that demands a response latency of
under 500ms (ISO-latency). As shown in Figure 2a, four differ-
ent models can satisfy the response latency, but each model
comes with a different prediction accuracy. Similarly, if the
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Figure 3. Variation of cost of using VMs vs. serverless functions under constant request load. Each of the four bars under any model type
corresponds to request arrival rates of 10, 50, 100, and 200 requests/second.
same application requires accuracy to be at-least 80% (ISO-
accuracy), as shown in Figure 2b, four different models with
different response latencies can satisfy the accuracy. There-
fore, depending on the cost budget of the application, one
can choose among the different model types by trading-off
accuracy or response latency. Hence, it is evident that there
is a large optimization space where different models can
be selected based upon the needs of the applications. Prior
work [9] tries to solve model selection only from a through-
put perspective where different sized batching of multiple
inference queries together results in varied throughput.
Observation 1:Model selection should be focused on meeting
the cost requirement of an application without compromising
on the accuracy and/or latency constraint.

2.2 Performance under given constraint

Model selection is not an independent problem because the
user-applications also have a cost constraint incurred as
a result of procuring resources from the public cloud. We
compare the cost of deploying the inference service on a
group of virtual machines and serverless functions. We usem4-
large instances for VMs and we fix the number of inference
queries each VM can handle in parallel, without violating
response latencies based on our characterization on AWS
EC2. The serverless functions are configured according to the
memory requirements of each model. Figure 3a plots the cost
of hosting the iso-latency model types (shown in Figure 2a)
for a constant request arrival rates of 10, 50, 100, 200 req/sec
over 1 hour duration. It can be seen that virtual machines
are always cheaper compared to using serverless functions
for all constant request rates. A similar trend is observed for
the iso-accuracy model types, which is shown in Figure 3b.
It is also possible to use bigger VMs, which can handle

more concurrent requests compared to m4-large, thus mini-
mizing the total number of VMs used. However, we observe
that the pricing of EC2 VMs is a linear function of the VM
size in terms of compute capacity and memory. Hence, nor-
malized by number of requests, bigger VMs would still incur
similar costs as smaller VMs.
Observation 2: VMs should be used to handle requests during
constant arrival rates. Also, the number of concurrent requests
which can be executed in VMs should be accurately determined
to meet response latency.
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Figure 4. Over-provisioning of util_aware and exascale, nor-
malized to a baseline reactive scheme for four traces.

2.3 Over-provisioning VMs

Real-world request arrivals rates are usually not constant as
they significantly vary over time (e.g. diurnal, flash-crowds
etc.) Therefore, resource procurement and management deci-
sions need to be adjusted depending on the resource utiliza-
tion/load and arrival rates. Public cloud providers leave these
major decisions to be “manually handled" by users, which is
very time consuming and strenuous. As a result, the major-
ity of application providers use static resource provisioning,
which results in poor resource utilization and higher costs.

Prior works [3, 9] have tried to solve the resource scal-
ing problem with respect to hosting the applications in VMs.
They employ autoscaling mechanisms to cope up with dy-
namic load. These autoscaling mechanisms can be of two
types: (i) spawn VMs if the resource utilization of existing
VMs reaches a certain threshold (80% in most cases) [9], and
(ii) spawn additional VMs than predicted request demand [6].
We name the former autoscaling scheme as util_aware and
the later as exascale. Both these schemes suffer from over-
provisioning VMs because (i) we cannot always accurately
predict the future load, and (ii) resource utilization is not
always the right indicator for increased load.
We conduct simulation experiments to compare the

schemes, using the profiled values (explained in Section 2.2)
for four different well-known request arrival traces. Each
request in the trace is associated with an ML inference query,
which is randomly picked from our model pool. Figure 4
shows the ratio of over-provisioned VMs compared to a
baseline reactive autoscaling mechanism. It can be seen that
although both util_aware and exascale can reduce SLO vi-
olations (shown in Figure 5), they still suffer from 20% to
30% over-provisioned VMs across all four traces. This, in
turn, increases the cost of deployment (shown in Figure 5),
compared to baseline reactive scheme.
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Observation 3: Only-VM based resource procurement should
not be used during dynamic load as it leads to over-provisioned
resources and increased cost.

2.4 Using serverless functions with VMs

The provisioning latency is a major contributor for
VM over-provisioning during request surges be-
cause the increased time to provision new VMs
results in the increase of response latencies which
in-turn leads to provisioning more VMs in advance.
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Prior works [5, 10]
try to hide the pro-
visioning latency of
VMs by using server-
less functions as a
handover mechanism
when starting new
VMs. We name this
scheme as mixed pro-

curement. However, these schemes do not address the holis-
tic problem by taking into account model selection, resource
selection, and resource scaling to cope up with user-specified
constraints. We conduct similar experiments to mimic the
mixed procurement scheme. As shown in Figure 5, mixed
procurement reduces the over-provisioning cost of VMs. At
the same time it also minimizes latency violations equivalent
to exascale scheme. However, we argue that there is scope
to further optimize resource procurement based on the fre-
quency of peak load and constant load in a given request

arrival scenario. Figure 6 plots the peak-to-median ratio for
three different traces. From our simulation experiments we
observe that mixed procurement did not reduce cost of Wiki
trace. This is because the difference between peak-to-median
in the traces are not large and therefore more functions get
offloaded to serverless functions. Thus, using serverless func-
tions for such scenarios will not drastically reduce cost. For
the other traces like Berkeley, WITS and Twitter, the peak-
to-median difference is more than 50% and therefore they
can benefit from offloading requests to serverless functions.
Observation 4: It is important to note that, the request arrival
pattern plays a key role in determining if mixed procurement
can be cost effective.

2.5 Challenges with serverless functions

Apart from arrival rates, memory allocation to serverless
functions play a non-trivial role in terms of cost. In our exper-
iments we configure the memory allocation to the lambda
function such that individual query latency is within the
user-specified latency constraint. We conducted character-
ization experiments on AWS Lambda, currently the most
predominant serverless function provider, to study the mem-
ory allocated vs computation time trade-off. Figure 7 shows
the computation time and cost for executing 1 million infer-
ence queries for three different model types with different
memory allocations.We vary thememory allocation, starting
from least required memory for the model to the maximum
available limit in AWS (3GB)1. It can be clearly seen that the
computation time reduces with increased memory alloca-
tion but also results in higher cost of deployment for every
model type. This is because, inherently, serverless providers
allocate a powerful compute core for functions with higher
memory allocation. Therefore, depending on the latency re-
quirements of the user applications, serverless functions need
to be allocated the appropriate memory. However, this might
result in increased cost when using serverless functions along
with VMs for varying latency requirements. Hence, the over-
all cost incurred by mixed procurement can be higher or
lower than VM-only autoscaling policies.

Prior work like Cherrypick [1] solves the resource se-
lection and configuration problems from VM perspective
but does not consider Serverless Functions. We argue that
compared to VMs there is more variability in configurations
for serverless functions because the resources are billed at a
more fine-grained2 allocation of CPU and memory.
Observation 5: Serverless functions can be used with VMs to
avoid over-provisioning resources, but the right configuration
needs to be accurately determined for the functions such that
it satisfies the application cost and latency constraints.

1For squeezenet model, allocating beyond 2GB did not reduce computation
time, but resulted in increased cost
2The smallest standard performance VM (C4 family) comes with 2 vcpus
and 3.75GB memory. But serverless functions can be configured starting
from 1 vcpu and 0.128GB memory.
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3 How to Design Self-Managed ML
Prediction Serving System?

The objectives from Section 2 strongly motivate the need
for a self-managed ML-prediction system that avoids the
over-provisioning problem in VMs by efficiently blending
serverless functions with VMs. At the same time, right-sizing
the number of requests in VMs and correctly configuring
serverless functions is quintessential to satisfy the three pri-
mary application constraints: cost, latency, and accuracy.

3.1 Model Selection

In accordance with Observation 1, model selection should be
a function of any two parameters which optimize the remain-
ing (third) parameter. Prior work [9] solves an optimization
problem such that the input parameters are model_type,
hardware_type (CPU or GPU), and the output parameter is
response latency. To do so, they suggest using offline profil-
ing or results from previous executions. Unlike prior works,
we suggest that the input and output parameters can be any
linear combination of the three primary parameters men-
tioned above, depending on the application constraints. Note
that, in contrast to cost and response-latency, accuracy can-
not be determined just from the previous runs. We need
some feedback from the end-user to make a correct estimate
of accuracy. Therefore, it would be best to build a learning-
based system, which takes into account feedback (user-given
data) to build a novel model selection system.

3.2 Resource selection

3.2.1 Static Load From Observation 2, it is clear that, be-
sides model selection, it is crucial to select and configure
the right resource to satisfy the application constraints. For
applications where the request load is fairly constant over
time, only VM-based resources can be procured to serve
the requests. To determine the number of requests each VM
can handle in parallel, we can conduct offline profiling for
different model types.

3.2.2 Dynamic Load For applications with dynamic load
(Observation 3), serverless functions can be used to mitigate
the over-provisioning cost of VMs. However, a single ap-
plication can contain a mix of queries with varying latency
demands. Therefore, queries with strict latency requirements
can be scheduled on serverless functions, if a VM with free
resources is unavailable. To handle dynamic load variations,
a load-monitor can be designed such that it constantly moni-
tors different periods of static load and peak load.We propose
to plug-in intelligent peak-to-median prediction policies (in
accordance toObservation 4) , which can aid the load-monitor
to estimate the duration of static load. Furthermore, it can
measure the peak-to-median ratio in sampling windows,
which can be used to decide if serverless functions are re-
quired to balance the load. However, during flash-crowds,
where load-prediction fails to accurately estimate the load,

serverless functions can inherently be used to handle requests
to meet the response latency, but by incurring higher costs.

3.2.3 Provisioning Time vs Execution Time We know
that new VMs take a few hundred seconds to start-up. Server-
less functions can start-up much faster (1s-10s), but they also
incur additional latency to load a pre-trained model from
external data-store. Prior literature [5, 10] tries to hide the
model load latency by pre-warming serverless function in-
stances through periodically issuing dummy requests. How-
ever, such hacks can fail if the cloud service provider decides
to change the idle timeout of function instances or change
the overall mechanism to recycle idle function instances.
Rather than capitalizing on such design hacks, we need to
develop prediction policies to estimate load correctly. Also,
we suggest service providers should handle the pre-warming
decision by knowing model-wise usage statistics to enable
instance sharing, which uses the same models. This would
lead to a reduction in cold-start latencies incurred for users
with the same type of requests.

3.2.4 Configuring Serverless Functions In keeping
with Observation 5, it is quintessential to configure the mem-
ory allocation of serverless functions to meet the application
SLOs. Through offline profiling or initial runs, we can de-
termine the right memory allocation for a given response
latency. From our observations in AWS Lambda, three types
of cores are allocated in the increasing order of the memory
allocation (0.5GB, 1.5GB, and >2GB). Also, these policies can
be changed over time by Amazon, and they can also be dif-
ferent for other cloud providers [8]. Therefore, the resource
manager should be able to leverage this information to make
optimal serverless function configuration decisions.

4 Evaluation and Initial Results
This section introduces how an ML-serving framework can
capitalize on the design choices discussed in Section 3. We
design three different experiments to study the effects on
cost of ML servings due to (i) varying SLOs and (ii) varying
application constraints.
Implementation Methodology: We developed a proto-
type on top of Amazon EC2 and Lambda services to evaluate
the some of the benefits of our proposed design choices. We
use AWS as the testbed for conducting extensive experiments.
The types of instance used in our evaluation include all the
c5 and m5 instances for EC2. By offline profiling, we estimate
the number of model instances each VM can execute in par-
allel without violating the model latency. Also, we estimate
the right configuration of lambda functions by conduction
offline experiments. For the model selection problem, we
maintain an offline model cache which consists of the de-
tails of individual model latency and accuracy profiled by
executing on c4l̇arge VM. The scheduler will pick the right
model combinations from the cache based on the application
requirements. We implement a load generator, which uses a
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(a) Workload-1: Berkeley Trace.
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(b) Workload-1: WITS Trace.

Figure 8. Comparison of the resource procurement cost for two
different traces using five different schemes. The cost is normalized
to reactive scaling scheme.
1 hour sample of the real-world trace for request arrival time
generation. Each request is derived from a pool of pre-trained
ML inference models for image classification (as explained
in Section 2). We use Apache MXNet and TensorFlow frame-
work to deploy and run inference on the models.
Evaluation:We evaluate our results by comparing the cost,
latency and accuracy for two different workloads. Workload-
1 consists of a mix of queries which have both strict and
relaxed latency requirements. We compare the execution
of this workload against the following resource procure-
ment schemes: (i) util_aware, (ii) exascale, (iii) mixed and (iv)
Paragon. These schemes are modeled after state-of-the-art
prior works as explained earlier in Section 2.3. The Paragon
scheme does not offload to lambdas for relaxed latency
queries. Workload-2 consists of different cost, accuracy and
latency requirements for all queries.We compare the Paragon
model selection scheme against a naive constraints-unaware
model selection scheme.
Results: Figure 8 plots the SLO and cost for workload-1
across Berkley and WITS trace. It can be seen that mixed
scheme has similar cost to reactive but it reduces SLO vi-
olations by up to 60%. This is because, the mixed scheme
offloads request in the peak to serverless functions. However,
the Paragon scheme is 10% more cost-effective than mixed
and at the same time ensures similar SLOs. This is because
the Paragon scheme is aware of the latency requirements
of individual queries and does not blindly offload queries to
lambdas when there is increase in load. Therefore, this results
in reduced cost and at the same time does not violate SLOs.
This re-instantiates our claim that the resource procurement
scheme needs to be aware of request constraints.

Figure 1 shows the candidate models which can be used for
a given latency and accuracy. Our Paragon scheme optimizes
the model selection for workload-2 such that, it chooses
the least cost-effective model for the given accuracy and
latency constraint. The naive model selection policy would
not choose the models as its oblivious to user requirements
and model characteristics. In our experiments, compared
to naive selection scheme which does not optimize model
selection for cost, the Paragon schemes reduces the cost of
resource procurement by up to 20% (results are not plotted).
This is because the Paragon scheme jointly considers all three
parameters and chooses the least costing model.

5 Conclusion
There is wide-spread prominence in the adoption of ML-
based prediction systems spanning across a wide range of
application domains. The critical challenge of deploying ML
prediction serving applications in public cloud is to combine
both model and resource heterogeneity towards optimizing
for application constraints. In this paper, we propose to build
a self-managed ML prediction system, which can optimize
the diverse application requirements based on characteristics
of heterogeneous public cloud resource offerings. Towards
this, we discuss the trade-offs of intermixing resources like
serverless functions along with VMs and identify the key
challenges associated with configuring these resources. We
propose multiple key-policies to make resource manage-
ment; (i) latency aware, (ii) multi-dimensional SLO aware,
and (iii) request load variation aware. These policies can be
collectively used for cost-effective prediction serving with-
out compromising on latency and accuracy.
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