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Deploying Dynamic DAGs in Serverless Platforms

Abstract
The growing popularity ofmicroservices has led to the pro-

liferation of online cloud service-based applications, which

are typically modelled as Directed Acyclic Graphs (DAGs)

comprising of tens to hundreds of microservices. The vast

majority of these applications are user-facing, and hence,

have stringent SLO requirements. Serverless functions, hav-

ing short resource provisioning times and instant scalability,

are suitable candidates for developing such latency-critical

applications. However, existing serverless providers are un-

aware of the workflow characteristics of application DAGs,

leading to, in most cases, container over-provisioning, which

is further exacerbated in the case of dynamic DAGs, where

the function chain for an application is not known a pri-

ori. Motivated by these observations, we propose Kraken,

a workflow-aware resource management framework that

minimizes the number of containers provisioned for an ap-

plication DAG, while ensuring SLO-compliance. We design

and implement Kraken on OpenFaaS and evaluate it on a

multi-node Kubernetes-managed cluster. Our extensive ex-

perimental evaluation using DeathStarbench workload suite

and real-world traces demonstrates that Kraken spawns up

to 76% fewer containers, thereby improving container uti-

lization and saving cluster-wide energy by up to 4× and 48%,

respectively, when compared to state-of-the art schedulers

employed in serverless platforms.

1 Introduction
Cloud applications are embracing microservices as a pre-

mier application model, owing to their advantages in terms

of simplified development and ease of scalability [28, 37].

Many of these real-world services often comprise of tens or

even hundreds of loosely-coupled microservices [39] (e.g.,

Expedia [15] and Airbnb [2]). Typically, these online service

applications are user-facing and hence, are administered

under strict Service Level Objectives (SLOs) and response

latency requirements. Therefore, choosing the underlying

resources (virtual machines or containers) from a plethora of

public cloud resource offerings [31, 34, 38, 42, 45] becomes

crucial due to their characteristics (such as provisioning

latency) that determine the response latency. Serverless com-

puting (FaaS) has recently emerged as a first-class platform

to deploy latency-critical user facing applications as it miti-

gates resource management overheads for developers, while

simultaneously offering instantaneous scalability. However,

deploying complex microservice-based applications on FaaS

has unique challenges owing to its design limitations.

First, due to the stateless nature of FaaS, individual mi-

croservices have to be designed as functions and explicitly

chained together using tools to compose the entire applica-

tion, thus, forming a Directed Acyclic Graph (DAG) [31].

Second, the state-management between dependent func-

tions has to be explicitly handled using a predefined state-

machine and made available to the cloud provider [6, 23].

Third, the presence of conditional branches in some DAGs,

can lead to uncertainties in determining which functions

will be invoked by different requests to the same applica-

tion. For instance, in a train-ticket application [37], actions

like make_reservation can trigger different paths/workflows

(subset of functions) within the application. These design

challenges, when combined with the scheduling and con-

tainer provisioning policies of current serverless platforms,

result in crucial inefficiencies with respect to application per-

formance and provider-side resource utilization. Two such

inefficiencies are described below:

• The majority of serverless platforms [30, 41, 43, 45] assume

that DAGs in applications are static, implying that all com-

posite functions will be invoked by a single request to the

application. This assumption leads to the spawning of equal

number of containers for all functions in proportion to the

application load, resulting in container over-provisioning.

• Dynamic DAGs, where only a subset of functions within

each DAG are invoked per request type, necessitate the ap-

portioning of containers to each function. Recent frame-

works like Xanadu [26], predict the most likely functions to

be used in the DAG. This results in container provisioning

along a single function chain. However, not proportionately

allocating containers to all functions in the application, can

lead to under-provisioning containers for some functions

when requests deviate from the predicted path.

To address these challenges, we propose Kraken, a DAG

workflow-aware resource management framework specifi-

cally catered to dynamic DAGs, that minimizes resource con-

sumption, while remaining SLO compliant. The key compo-

nents of Kraken are (i) Kraken employs a Proactive Weighted

Scaler (PWS) which deploys containers for functions in ad-

vance, by utilizing a request arrival estimation model. The

number of containers to be deployed is jointly determined by

the estimation model and function weights. These weights

are assigned by the PWS by taking into account the function

invocation probabilities and parameters pertaining to the

DAG structure namely, Commonality (functions common to

multiple workflows) and Connectivity (number of descendant

functions), (ii) In addition to the PWS, Kraken employs a Re-

active Scaler (RS) to scale containers appropriately to recover

from potential resource mismanagement by the PWS.
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We have developed a prototype of Kraken using OpenFaaS,

an open source serverless framework [11], and extensively

evaluated it using real-world datacenter traces on a 160 core

Kubernetes cluster. Our results show that Kraken spawns

up to 76% fewer containers on average, thereby, improving

container utilization and cluster-wide energy savings by up

to 4× and 48%, respectively, when compared to state-of-the

art serverless schedulers. Furthermore, Kraken guarantees

SLO requirements for up to 99.97% of the requests.

2 Background and Motivation
We start with providing an overview of serverless DAG’s

along with the related work (Table 1) and discuss the chal-

lenges which motivate the need for Kraken.

2.1 Serverless Function Chains (DAG’s)
Many applications are modelled as function chains and

typically administered under strict SLOs (hundreds of mil-

liseconds) [29]. Serverless function chains are formed by

stitching together various individual serverless functions

using some form of synchronization to provide the func-

tionality of a full-fledged application. Function chains are

supported in commercial serverless platforms such as AWS

Step Functions [4, 23], IBM Cloud Functions [8], and Azure

Durable functions [6]. By characterizing production appli-

cation traces from Azure, Shahrad et.al [39] have elucidated

that 46% of applications have 2-10 functions. Excluding the

most general (and rare) cases, where applications can have

loops/cycles within a function chain [26], applications can be

modelled as aDirected Acyclic Graphwhere each vertex/stage

is a function (DAG) [25] Henceforth, we will use the terms

‘function’ and ‘stage’ interchangeably. We define a workflow

or path within an application as a sequence of vertices and

the edges that connect them, starting from the first vertex

(or vertices) and ending at the last vertex (or vertices). An

application invokes functions in the sequence as specified by

the path in the DAG. Based on the nature of the workflow,

function chains can be classified as Static or Dynamic.

2.1.1 Static DAGs:In static function chains (or DAGs), the

workflows are specified in advance by the developer (us-

ing a schema), which is then orchestrated by the provider.

This results in a predetermined path being traversed in the

event of an application invocation. For example, in the Ho-

tel Reservation (Figure 1c), if only one path (say, NGINX -

Make_Reservation) is always chosen, it represents a static

function chain. Henceforth, we refer to static function chains

as Static DAG Applications (SDAs). Clearly, having prior

knowledge of what functions will be invoked for an applica-

tion, makes container provisioning easier for SDAs.

2.1.2 Dynamic DAGs:Although the application DAG con-

sists of multiple functions that may be invoked, there are

cases where the functions can themselves invoke other func-

tions depending on the inputs they receive. We refer to such

functions as Dynamic Branch Points (DBPs), and the chains

they are a part of as Dynamic Function Chains. In such cases,
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SLO Guarantees ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic DAG Applications ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Slack-aware batching ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓

Cold Start Spillover Prevention ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Function Weight Apportioning ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Energy Efficieny ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Request Arrival Prediction ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Satisfactory Tail Latency ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Table 1. Comparing the features of Kraken with other state-of-the-art

resource management frameworks.

App DBP Total Fanout Possible Paths Max Depth
Social Network 2 8 7 5

Media Service 3 7 5 6

Hotel Reservation 1 2 2 4

Table 2. Analyzing Variability in Application Workflows.

deploying containers, without prior knowledge about the

possible paths in the workflow, leads to sub-optimal con-

tainer provisioning for individual functions. Figure 1 shows

the DAGs for three Dynamic Function Chains. Social Net-

work (Figure 1a), for example, is one such chain that has 11

functions in total, with each subset of functions contribut-

ing to multiple paths (7 paths in total). For instance, from

the start function NGINX, any one of Search, Make_Post,

Read_Timeline, and Follow can be taken. Henceforth, we re-

fer to such Dynamic DAG Applications as DDAs.

2.2 Motivation
Two specific challenges in the context of DDAs along with

potential opportunities to resolve them are described below:

Challenge 1: Path Prediction in DDAs DDAs will only
have a subset of their functions invoked for an incoming

request to the application because of the presence of condi-

tional paths within their DAGs. Figure 1 depicts the DAGs

of three such applications from the 𝐷𝑒𝑎𝑡ℎ𝑆𝑡𝑎𝑟 benchmark

suite [28], and Table 2 summarizes the various workflows

that can be triggered by an incoming request to them. ‘Total

fan-out’ and ‘Max Depth’ denotes the total number of out-

going branches and maximum distance between the start

function and any other function in a DAG, respectively. Note

that each function triggers only one other function in the ap-

plication at a time. The decision to trigger the next function

typically depends on the input to the current function, al-

though there are cases likeMedia Service where this decision

may depend on previous function inputs as well. Therefore,

there is considerable variation in the functions that can be

invoked in DDAs, thus, negating the inherent assumption

in many frameworks [30, 39, 41, 45] that all functions will

be invoked with the same frequency as the application itself.

This discrepancy can lead to substantial container overpro-

visioning.
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Figure 1. DAGs of Dynamic Function Chains.
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Figure 2. Function-wise Breakdown of Container Provisioning across Applications.

Opportunity 1: In order to reduce overprovisioning of con-

tainers, it is vital to design a workflow-aware resource manage-

ment (RM) framework that can dynamically scale containers

for each function, as opposed to uniformly scaling for all func-

tions. To design such a policy, the RM framework needs to know

each function’s invocation frequency, which is a good estimator

of its relative popularity.

We introduce weights to estimate the appropriate number

of containers to be spawned for each function. A function’s

weight is calculated using the relative invocation frequency

of a function along other DAG-specific parameters (explained

in the next section). The relative invocation frequency of a

function is measured with respect to its constituent applica-

tion. The same function belonging to multiple applications

can, therefore, have distinct weights in each application.

To analyze the benefits of using invocation frequency,

we designed a scaling policy that employs weighted con-

tainer scaling. For the purposes of this experiment, we base

our function weights only based the invocation frequencies.

Figure 2 depicts the number of containers provisioned per

function for three container provisioning policies subject to

a Poisson arrival trace (𝜇 = 25 requests per second (rps)) for

three applications. The static provisioning policy is repre-

sentative of current platforms [45] which spawn containers

for functions in a workflow-agnostic fashion. Xanadu [26]

represents the policy that scales containers only along the

Most Likely Path (MLP), which is the request’s expected

path. If the request takes a different path, Xanadu provisions

containers along the path actually taken, in a reactive fash-

ion, and scales down the containers it provisioned along

the MLP. Consequently, Xanadu, when subject to moder-

ate/heavy load, over-provisions containers by 32% compared

to the Probability-based policy (from Figure 2 ) as a result of

being locked into provisioning containers for the MLP until

it is able to recalculate it. Our probability-based policy, on

the other hand, provisions containers for functions along
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Figure 3. Performance Deterioration resulting from Container Deficiency

at Critical Functions. The Primary Y-axis denotes the Average End-to-End

Response Time, the Secondary Y-axis represents the percentage of SLOs

satisfied and the X-axis indicates the Application under consideration.

every possible path in proportion to their assigned weights.

Note that variability in application usage patterns can lead

to changes in function probabilities within each DDA, which

the policy will have to account for.

Challenge 2: Adaptive Container Provisioning. While

probability-based container provisioning can significantly

reduce the number of containers, the presence of container

cold-starts leads to SLO violations (requests not meeting

their expected response latency). This is because, cold starts

can take up a significant proportion of a function’s response

time (up to 10s of seconds [13, 14]). A significant amount

of research [18, 22, 24, 35, 36, 40, 47] has been focused to-

wards reducing cold-start overheads (in particular, proactive

container provisioning [3, 30, 41, 43]) However, in the case

of DDAs, DBPs make it unclear as to how many containers

should be provisioned in advance for the functions along

each path in the DAG.

We identify two interlinked factors, in the context of

DDAs, that need to be accounted for when making container

scaling decisions. The first, is what we call, critical functions.

These are functions within a DAG that have a high number

of descendant functions that are linked to it and we use the

term Connectivity to denote the ratio of number of descen-

dant functions to the total number of functions. Inadequately

provisioning containers for such functions causes requests to

queue up as the containers are spawned in the background.
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Moreover, this additional request load trickles down to all

the descendants, adversely affecting their response times

as well. We refer to this effect as Cold Start Spillover. Fig-

ure 3 compares the performance degradation resulting from

underprovisioning both Critical and Non-Critical functions.

The (Critical, Non-Critical) function pairs chosen for this

experiment were (Make_Post, Text), (ID, Rating) and (NGINX,

Search) for Social Network, Media Service and Hotel Reserva-

tion, respectively. It can be observed that underprovisioning

containers for just one Critical function has a greater im-

pact on application performance than doing so for a single

Non-Critical function, with the end-to-end response time

and SLO guarantees becoming 24ms and 0.25% worse on

average. This can lead to worsening effects if the same were

to happen with multiple critical functions.

In addition to critical functions, it is also crucial to assign

higher weights to common functions as well. Common func-

tions refer to those which are a part of two or more paths

within an application DAG. Figure 4 shows the ‘hit rate’ of

functions within an application that is subject to a constant

load where any path in the application is equally likely to

be picked. It can be seen that functions which are common

to a larger number of paths are invoked at a higher rate by

such a request arrival pattern. Therefore, common functions

have a higher chance of experiencing increased load due to

being present in multiple paths. Therefore, higher weights

have to be assigned to such functions to ensure resilience in

the presence of varying application usage patterns.

Opportunity 2: Although proactive provisioning combined

with probability-based scaling is useful, it is essential to iden-

tify critical and common functions in each DDA and assign

them higher weights in comparison to standard functions.

Hence, rather than simply measuring the weights only in

terms of function invocation frequency, we also need to

account for DAG specific factors like Commonality and Con-

nectivity. The above discourse motivates us to rethink the

design of serverless RM frameworks to cater to DDAs as well.

One key driver for the design lies in a Probability Estimation

Model for individual functions, which is explained below.

3 Function Probability Estimation Model
As elucidated in Opportunity-1, to specifically address the

container over-provisioning problem for DDAs, we need to

estimate the weights to be assigned to their composite func-

tions, a key component of which is the function invocation

probability. In this section, we model the function probability

estimation problem using a Variable Order Markov Model

(VOMM) [21]. VOMMs are effective in capturing the invo-

cation patterns of functions within each application while

simultaneously isolating the effects of other applications

that share them. This aids us in the calculation of function

invocation probabilities. Wherever appropriate, we draw in-

spiration from the related work that model user web surfing

behavior [19, 20]. VOMMs are an extension of Markov Mod-

els [27], where the transition probability from the current

state to the next state depends not only on the current state,

but possibly on its predecessors (which we refer to as the

’context’ of the state). It is essential to capture this in some

of our workloads such as the𝑀𝑒𝑑𝑖𝑎 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 application. The

order of the VOMM denotes the number of predecessors that

influence the transition decision.

An application DAG can map neatly onto a Markov model

wherein the functions within the application DAG are mod-

elled as states of the VOMM. The process of one function

invoking another function corresponds to a transition from

the caller function state to the callee function state. The

weight for each function corresponds to the state transition

probability from the start state to the current one (note that

this may require possibly transitioning through a number of

intermediate states).

Thus, for a DAG with 𝑛 functions, the transition probabil-

ity matrix, 𝑇 , is an 𝑛 × 𝑛 matrix, where 𝑛 is the total number

of states and each entry, 𝑡 𝑗 𝑖 , is the transition probability

from the state corresponding to the function along the col-

umn j, (𝑓𝑗 ), to that of the function along the row i, (𝑓𝑖 ). An

example of a Transition Matrix for the Social Network, with

11 functions, is depicted in Figure 5. An additional state, end,

is added to represent the state the model transitions to after

a path in the DAG is completely executed. In Figure 5, as-

suming both column and row indices of𝑇 start at 0, an entry

𝑡0 4 represents the transition probability from NGINX ’s state

to Follow’s state and is equal to 0.2. In general, this transition

probability, 𝑡 𝑗 𝑖 , is calculated as the number of requests from

𝑓𝑗 to 𝑓𝑖 divided by the number of incoming requests to 𝑓𝑖 in

the context of the application being considered.

The Probability Vector is an 𝑛×1 column vector that cap-

tures the probabilities of the model being in different states

after a number of time steps have elapsed, given that the

model was initialized at a known state. A ‘time step’ refers to

a unit of measuring state change in the Markov Model. For

practical purposes, we fix it to be the execution time of the

slowest function at the current function depth. The ‘depth’

of a function, in this context, is defined as the distance, in

terms of the number of edges in the DAG, from the start state

to the current state. The Probability Vector after 𝑑 number

of time steps can be represented as 𝑃𝑑 . Then, the Probability

Vector for the next time step, 𝑑 + 1 is given by the transition

equation, 𝑃𝑡+1 = 𝑇 · 𝑃𝑡 . This equation infers that the Proba-

bility Vector at the next time step is obtained by performing

a transition operation across all possible current states.

Repeatedly carrying out this transition process, starting

from the initial Probability Vector, enables the estimation of

probabilities of each function along all possible workflows.

Iterating this process for 𝑑 time steps would yield the proba-

bilities of functions at a depth of 𝑑 from the start function,

given by 𝑃𝑑 = 𝑇𝑑 · 𝑃0. Thus, we can compute the probability
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Figure 4. Function Hit Rate for an Evenly Distributed Load across all Paths in each Application.
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Figure 5. Transforming the Social Network DAG into a Transition Matrix.

Notation Meaning
T Transition Matrix

P𝑑 Probability Vector for functions at depth, d

n # functions in application or # states in model

f 𝑖 , f𝑗 functions along row, i or column, j in T

t 𝑗 𝑖 Transition probability from f 𝑗 𝑡𝑜 f𝑖

W𝑝 Probability calculation time window

t Request arrival time

d # time steps for which transitions are done

PL𝑡 Scalar that represents the anticipated # requests at time, t

NC
𝑑
𝑡 # containers needed for functions at depth d, at time t

Table 3. Notations used in Equations.

of any function in the DAG by varying the depth, 𝑑 , using

this equation. In order to apply this to proactive container

allocation decisions, we can adopt the following procedure.

The incoming load to the application at time stamp, 𝑡 , is

denoted as 𝑃𝐿𝑡 and can be predicted using a load estimation

model. Assuming each request to a function within the appli-

cation spawns one container for that function, the number

of containers to be provisioned in advance for functions at

depth 𝑑 is given by:

𝑁𝐶𝑑
𝑡 = ⌈ PL 𝑡 · (𝑇𝑑 · 𝑃0)⌉

Here,𝑁𝐶𝑑
𝑡 is a column vector of𝑛 elements, each correspond-

ing to the number of elements required to be provisioned

for functions at a depth, 𝑑 , from the start function. Provi-

sioning these containers at a fixed time window in advance

from 𝑡 prevents cold starts from affecting the end-user ex-

perience. For example, if 𝑃𝐿𝑡 is estimated to be 25 requests,

then from Figure 5, we obtain the number of containers

needed for functions at depth, 𝑑 = 1, by multiplying 25 with

𝑃1 (which is 𝑇 1·P0). Consequently, the total number of con-

tainers required for each function in the application can be

computed by performing a summation of 𝑁𝐶𝑑
𝑡 across all

possible depths, 𝑑 , from the start function.

We can now transform our previously-assumed Markov

Model into a VOMMby splitting up context-dependent states

into multiple context-independent states (the number of

which is dependent on the DAG structure and the order of the

VOMM). For example, in Figure 5, if the transition from Com-

pose_Post to Post_Storage depended on the immediate prede-

cessors of Compose_Post, the Compose_Post state would be

context-dependent and would therefore, be split into context-

independent states, namely, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒_𝑃𝑜𝑠𝑡 |𝑇𝑒𝑥𝑡 (Compose

Post given𝑇𝑒𝑥𝑡 was already invoked),𝐶𝑜𝑚𝑝𝑜𝑠𝑒_𝑃𝑜𝑠𝑡 |𝑀𝑒𝑑𝑖𝑎

etc. for the previous equations to hold. This changes the to-

tal number of states from 𝑛 to 𝑁 , the number of extended

states, resulting in a larger Transition Matrix and Probability

Vector. To calculate the required number of containers for a

single function that has multiple context-independent states

associated with it, we take the sum of the calculated values

for all of those states.

4 Overall Design of Kraken
In this section, we describe the high-level design ofKraken

1

(Figure 6). Kraken leverages the function weight estimation

model described in the above section alongwith several other

design choices given as follows. Users submit requests in the

form of invocation triggers to applications 1 hosted on a

Serverless platform. In Kraken, containers are provisioned

in advance by the Proactive Weighted Scaler (PWS) 2 to

serve these incoming requests by avoiding cold starts. To

achieve this, the PWS 2 first fetches relevant system metrics

(using a monitoring tool 3 and the resource orchestrator

logs). These metrics, in addition to a developer-provided

DAG Descriptor 4 , are then used by the Weight Estimation

module 2a of PWS 2 to assign weights to functions on the

basis of their invocation probabilities. Commonality and Con-

nectivity (parameters in 2a ) are additional parameters used

in weight estimation to account for critical and common

functions. Additionally, a Load Predictor module 2b makes

use of the system metrics to predict the incoming load and

uses this in conjunction with the calculated function weights

to proactively spawn containers for each function. However,

only a fraction of these containers are actually spawned.

This is determined by the function’s batch size. The batch

1
Kraken is a legendary sea monster with tentacles akin to multiple

paths/chains in a Serverless DAG.
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Figure 6. High-level View of Kraken Architecture

size denotes the number of requests per function each con-

tainer can simultaneously serve without exceeding the SLO.

The underlying resource orchestrator 6 is responsible for

deploying these containers. In order to effectively handle mis-

predictions in load, Kraken also employs a Reactive Scaler

(RS) 7 that consists of two major components. First, is an

Overload Detector 7a that keeps track of request overloading

at functions bymonitoring queuing delays at containers. Sub-

sequently, it triggers container scaling 6 by calculating the

additional containers needed to mitigate the delay. Second,

a Function Idler component 7b evicts containers from mem-

ory 6 when an excess is detected. Thus, Kraken makes use

of PWS and RS to scale containers to meet the target SLOs

while simultaneously minimizing the number of containers

by making use of function invocation probabilities, function

batching, and container eviction, where appropriate.

4.1 Proactive Weighted Scaler
This subsection describes in detail the integral compo-

nents of PWS.

4.1.1 Estimating function weights:Since workflows in
SDAs are pre-determined, pre-deploying resources for them

is straightforward in comparison to DDAs, whose workflow

activation patterns are not known a priori. For DDAs, de-

ploying containers for each function in proportion to the

application load will inevitably lead to resource wastage.

To address this, we design a Weight Estimator 2a to assign

weights to all functions so as to allocate resources in propor-

tion to them. Explained below is the working of the proce-

dure 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 in Algorithm 1 which is used to

estimate function weights.

Probability: As alluded to in Section 2, one of the factors

used in function weight estimation is its invocation probabil-

ity. The procedure in Section 3 describes how the transition

probabilities of the states associated with functions are com-

puted through repeated matrix multiplications of the Transi-

tion Matrix,𝑇 with the Probability Vector, 𝑃 .𝐶𝑜𝑚𝑝𝑢𝑡𝑒_𝑃𝑟𝑜𝑏,

in Algorithm 1, first estimates the invocation probabilities

of a function’s immediate predecessors and uses it along

with system log information and load measurements of the

function to calculate its invocation probability.

Connectivity: In addition to function invocation probabil-

ities, it is necessary to also account for the effects of cold

starts on DDAs while estimating function weights. Cold

start spillovers (that often occur due to container underpro-

visioning), as described in Section 2, can impact the response

latency of applications harshly. Provisioning critical func-

tions with more containers helps throttle this at the source.

To this end, Kraken makes use of a parameter called Connec-

tivity, while assigning function weights. The Connectivity

of a function is defined as the ratio of number of its descen-

dant functions to the total number of functions. The 𝐶𝑜𝑛𝑛

procedure in Algorithm 1 makes use of this formula. For ex-

ample, in Figure 1c, the Connectivity of 𝐶ℎ𝑒𝑐𝑘_𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

is
2

5
since it has two descendants and there is a total of five

functions. Bringing Connectivity into the weight estimation

process helps Kraken assign a higher weight to critical func-

tions, in turn, ensuring that more containers are assigned to

them, resulting in improved response times for the functions

themselves, as well as their descendants.

Commonality: As described in Section 2, in addition to

cold start spillovers, incorrect probability estimations may

arise due to variability in workflow activation patterns. This

may be due to change in user behavior manifesting itself as

variable function input patterns. Such errors can lead to sub-

optimal container allocation to DAG stages in proportion

to the wrongly-calculated function weights. To cope with

this, we introduce a parameter called Commonality, which

is defined as the fraction of number of unique paths that the

function can be a part of with respect to the total number

of unique paths. This is how the procedure𝐶𝑜𝑚𝑚 calculates

Commonality in Algorithm 1. For example, in Figure 1a, the

Commonality of the function 𝐶𝑜𝑚𝑝𝑜𝑠𝑒_𝑃𝑜𝑠𝑡 in the Social

Network application is given by the fraction
4

7
as it is present

in four out of the seven possible paths in the DAG. Using

Commonality in the weight estimation process allowsKraken

to tolerate function probability miscalculations by assigning

higher weights to those functions that are statistically more

likely to experience rise in usage because of their presence

in a larger number of workflows. Note that we deal with

the possibility of container overprovisioning due to the in-

creased function weights by allowing both Connectivity and

Commonality to be capped at a certain value.

4.1.2 Proactive Container Provisioning:Once function
weights are assigned by considering the above factors, they

are employed in estimating the number of containers needed

per DAG stage (Estimate_Containers in Algorithm 1). These

containers have to be provisioned in advance to service fu-

ture load to shield the end user from the effects of cold starts

and thereby meet the SLO. This load will have to be predicted

in order to make timely container provisioning decisions.

Kraken makes use of a Load Predictor 2b (Algorithm 1 a )

which uses the EWMA model to predict the incoming load

at the end of a fixed time window, 𝑃𝑊 . This time window is
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Algorithm 1 Proactive Scaling with weight estimation

1: for Every Monitor_Interval= PW do
2: Proactive_Weighted_Scaler(∀𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)
3: procedure Proactive_Weighted_Scaler(func)

4: cl← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐿𝑜𝑎𝑑 (𝑓 𝑢𝑛𝑐)
5: 𝑝𝑙𝑡+𝑃𝑊 ← Load_Predictor(𝑐𝑙, 𝑝𝑙𝑡 ) a
6: batches←

⌈
p𝑙𝑡+𝑃𝑊

f𝑢𝑛𝑐.𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

⌉
b

7: total_con← Estimate_Containers(𝑏𝑎𝑡𝑐ℎ𝑒𝑠, 𝑓 𝑢𝑛𝑐)
8: reqd_con←𝑚𝑎𝑥 (𝑚𝑖𝑛_𝑐𝑜𝑛, 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑛)
9: Scale_Containers(𝑓 𝑢𝑛𝑐, 𝑟𝑒𝑞𝑑_𝑐𝑜𝑛)
10: procedure estimate_containers(load, func) ⊲ Output: 𝑟𝑒𝑞𝑑_𝑐𝑜𝑛

11: func.prob← Compute_Prob(func)
12: reqd_con← ⌈𝑙𝑜𝑎𝑑 ∗ 𝑓 𝑢𝑛𝑐.𝑝𝑟𝑜𝑏 ⌉
13: extra← ⌈(Comm(𝑓 𝑢𝑛𝑐) + Conn(𝑓 𝑢𝑛𝑐)) ∗ 𝑟𝑒𝑞𝑑_𝑐𝑜𝑛⌉
14: reqd_con← reqd_con + extra

chosen according to the time taken to scale all functions in

the respective application. Note that 𝑡 in the algorithm refers

to the current time. We choose this model so as to have a

light-weight load prediction mechanism that has minimal

impact on the end-to-end latency. This Load Predictor 2b

can be used in conjunction with the aforementioned Weight

Estimator 2a to calculate the fraction of application load

each function will receive. Kraken uses this load distribution

to pre-provision the requisite number of containers for all

functions in the application.

4.2 Request Batching
Many serverless frameworks [5, 10, 17, 26, 41, 43, 45]

spawn a single container to serve each incoming request to a

function. While this approach is beneficial to minimize SLO

violations, comparable performance can be achieved by using

fewer containers by leveraging the notion of slack [30, 32].

Slack refers to the difference in expected response time and

actual execution time of functions within a function chain.

Functions in a chain can have widely varying execution

times. Allotting stage-wise SLOs to each function in a chain

in proportion to their execution times reveals that there are

cases where there is significant difference (slack) between the

function’s expected SLO and its run-time. Figure 7 depicts

this slack for all functions in the applications considered.

This slack is leveraged by Kraken by batching multiple re-

quests to the functions by queueing requests at their contain-

ers. Requests are batched onto containers in a fashion similar

to the First Fit Bin Packing algorithm [33]. The number of

containers to be spawned is determined by the batch size as-

sociated with each function. The batch size for a function, 𝑓 ,

is defined as BatchSize (𝑓 ) =
⌊
StageSLO (𝑓 )
ExecTime (𝑓 )

⌋
. The batch size

represents the number of requests that can be served by a

function without violating the allotted stage-wise SLO. This

formula is used to compute the function batchsize in Algo-

rithm 1 b . The introduction of batching results in a reduction

in the number of containers spawned for each function in

the application by a factor of its batch size (Algorithm 1 b ).

4.3 Reactive Scaler (RS)
Though the introduction of Request Batching 5 allows

Kraken to reduce the containers provisioned, load mispredic-

tions and probability miscalculations can still occur, leading

to resource mismanagement, which could potentially affect

the SLO compliance. To deal with this, Kraken also employs

the RS 7 to scale containers up or down in response to re-

quest overloading at containers (due to under-provisioning)

and container over-provisioning, respectively. In case of in-

adequate container provisioning, the Overload Detector 7a

in the RS 7 detects the number of allocated containers for

each DAG stage and calculates the estimated wait times of

their queued requests (Algorithm 2 b ). If it detects requests

whose wait times exceed the cost of spawning a new con-

tainer (the cold start of the function), overloading is said

to have occurred at the stage. In such a scenario, Kraken

batches these requests (#_𝑑𝑒𝑙𝑎𝑦𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 in Algorithm 2)

onto a newly-spawned container(s) (Algorithm 2 c ). This

is because requests that have to wait longer than the cold

start would be served faster at a newly created container

than by waiting at an overloaded container. Similarly, for

stages where container overprovisioning has occurred, the

RS 7 gradually scales down its allocated containers to the

appropriate number, if its Function Idler module 7b detects

excess containers for serving the current load (Algorithm

2 a ). Thus, the RS 7 , in combination with the PWS 2 and re-

quest batching 5 , helps Kraken remain SLO compliant while

using minimum resources.

Algorithm 2 Reactive Scaling

1: for Every Monitor_Interval= DR do
2: Reactive_Resource_Manager(∀𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)
3: procedure Reactive_Resource_Manager(func)

4: cl← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐿𝑜𝑎𝑑 (𝑓 𝑢𝑛𝑐)
5: func.existing_con← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 (𝑓 𝑢𝑛𝑐)
6: if

⌈
c𝑙

f𝑢𝑛𝑐.𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

⌉
≤ func.existing_con then a

7: reqd_con←
⌈

c𝑙
f𝑢𝑛𝑐.𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

⌉
8: else
9: #_delayed_requests← Delay_Estimator(𝑓 𝑢𝑛𝑐) b

10: extra_con←
⌈
#_delayed_requests

f𝑢𝑛𝑐.𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

⌉
c

11: reqd_con← func.existing_con + extra_con

12: Scale_Containers(𝑓 𝑢𝑛𝑐, 𝑟𝑒𝑞𝑑_𝑐𝑜𝑛)

5 Implementation and Evaluation
We have implemented a prototype of Kraken using open-

source tools for evaluation with synthetic and real-world

traces. The details are described below.

5.1 Prototype Implementation
Kraken is implemented using, primarily, Python and Go,

on top of OpenFaaS [11], an open-source serverless platform.

OpenFaaS is deployed on top of Kubernetes [9], which acts

as the chief container orchestrator. OpenFaaS, by default,

comes packaged with an Alert Manager module which is

responsible for alerting the underlying orchestrator of re-

quest surges by using metrics scraped by Prometheus, which

is an open-source systems monitoring toolkit [12]. This, in

turn, triggers autoscaling to provision extra containers to

service the load surge. To cater to the design requirements

of Kraken, we disable the in-built Alert Manager and deploy
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Figure 7. Slack for various Functions in each Application.

Policy Component Implemented using/as

PWS

Probability System log info, Sparse Data Structures

Commonality & Connectivity DAG Descriptor

Load Predictor Pluggable model (EWMA)

Batching Function containers persisted in memory

RS

Load Monitor

Metrics from Prometheus & System logs

Replica Tracker

Table 4. Implementation details of Kraken’s policies.

the Proactive Weighted Scaler (PWS) and Reactive Scaler

(RS) to carry out our container provisioning policies.

Both PWS and RS collect relevant metrics, such as the

current container count, load history and request rate for

a function for a given time window, from Prometheus and

the Kubernetes system log, using the Replica Tracker and

Load Monitor modules. The load to each function within

each application is calculated separately using this infor-

mation. This prevents other applications from interfering

with the probability calculation of shared functions, thus

allowing Kraken to run multiple applications concurrently.

Additionally, the PWS uses a DAG descriptor (provided by

the developer) to get an overview of the inter-function re-

lationships. Table 4 gives an overview of Kraken’s policies

and their implementation details.

5.2 Large Scale Simulation
To evaluate the effectiveness of Kraken in large-scale sys-

tems, we built a high-fidelity multi-threaded simulator, in

Python, using container cold start latencies and function

execution times profiled from our real-system counterpart.

We have validated its correctness by comparing and corre-

lating various metrics of interest generated using synthetic

traces in both the simulator and the real-system. The sim-

ulator allows us to evaluate our model for a larger setup,

where we mimic an 11k core cluster which can handle up

to 7000 requests (70× more). Additionally, it helps compare

the resource footprint of Kraken against a clairvoyant policy

(Oracle) that has 100% load prediction accuracy.

5.3 Evaluation Methodology
We evaluate Kraken prototype on a 160-core Kubernetes

cluster with a dedicated manager node. Each node is a Dell

PowerEdge R740 server with 256GB of RAM and an Intel

CascadeLake Xeon CPU host. For energy measurements, we

use an open-source version of Intel Power Gadget [16] that

measures the energy consumed by all sockets in a node.

Load Generator: We provide different traces as inputs to

a load generator, which is based on Hey, an HTTP Load

generator tool [7]. First, we use a synthetic Poisson-based

request arrival rate with an average rate 𝜇 = 100. Second,

we use real-world request arrival traces from Wiki [44] and

Twitter [1] by running each experiment for about an hour.

The Twitter trace has a large variation in peaks (average =

3332 rps, peak= 6978 rps) when compared to the Wiki trace

(average = 284 rps, peak = 331 rps).

Applications: Each request is modelled after a query to

one of the three applications (DDAs) we consider from the

𝐷𝑒𝑎𝑡ℎ𝑆𝑡𝑎𝑟 benchmark suite [28]. We implement each appli-

cation as a workflow of chained functions in OpenFaaS. To

model characteristics of the original functions, we invoke

sleep timers within our functions to emulate their execution

times (including the time for state recovery, if any). Transi-

tions between functions are done using function calls on the

basis of pre-assigned inter-function transition probabilities

that vary (by approximately ±0.2) about a fixed value ran-

domly. Note that these probabilities are not visible to Kraken,

but are only used to model function invocation patterns.

Metrics and Resource Management Policies: We use

the following metrics for evaluation: (i) average number

of containers spawned, (ii) percentage of requests satisfy-

ing the SLO (SLO guarantees), (iii) average application re-

sponse times, (iv) end-to-end request latency percentiles,

(v) container utilization, and (vi) cluster-wide energy sav-

ings. We set the SLO at 1000ms. We compare these met-

rics for Kraken against the container provisioning policies

of Archipelago [41], Fifer [30] and Xanadu [26], which we

will, henceforth, refer to as Arch, Fifer and Xanadu, respec-

tively. Additionally, we perform a brick-by-brick compari-

son of Kraken with the weight estimator based on (a) stati-

cally assigned function probabilities (SProb) and (b) function

probabilities that dynamically adapt to changing invocation

patterns (DProb). These policies use all the components of

Kraken except Commonality and Connectivity. Finally, using

the simulator we perform different sensitivity studies on

varying the load, SLOs and also comparing against an ideal

(Oracle) scheme.

6 Analysis of Results
This section presents experimental results for single ap-

plications run in isolation for all schemes on the real system
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and simulation platform. We have also verified that Kraken

(as well as the other schemes) yield similar results (within

2%) when multiple applications are run concurrently.

6.1 Real System Results
6.1.1 Containers Spawned:Figure 8 depicts the function-
wise breakdown of the number of containers provisioned

across all policies for individual applications. This repre-

sents 𝑁𝐶𝑑
𝑡 (Section 3) for all possible depths, 𝑑 . It can be ob-

served that, existing policies, namely, Arch, Fifer and Xanadu

spawn, respectively, 2.41x, 76% and 30% more containers

than Kraken, on average, across all applications. Overallo-

cation of containers in case of Arch is due to two reasons:

(i) it assumes that all functions in the application will be

invoked at runtime; and (ii) it spawns one container per in-

vocation request. On the other hand, Fifer improves upon

this by reducing the total number of containers spawned

using request batching. However, it does not take workflow

activation patterns into consideration while spawning con-

tainers, leading to container overprovisioning. The recently

proposed scheme, Xanadu, is based on a workflow-aware

container deployment mechanism, but does not employ re-

quest batching, leading to extra containers being deployed

in comparison to Kraken. Furthermore, it can be seen that

Xanadu provisions a relatively high number of containers

for a particular group of functions as compared to the rest.

This is because it allocates containers to serve the predicted

load along only the Most Likely Path (MLP) of a request.

The rest of the containers are a result of reactive scaling that

follows from MLP mispredictions, which accounts for 34%

of the total number of containers spawned.

The reduction in the number of containers spawned by

Kraken in comparison to other policies is roughly propor-

tional to the total number of application workflows and the

slack available for each function within a workflow (see Ta-

ble 2 and Figure 7). For instance, Figure 8 indicates that the

Social Network, Media Service and Hotel Reservation applica-

tions show the highest (73%, 53% and 36%), moderate (40%,

28% and 7%) and least (at most 33%) reductions in the number

of containers spawned with respect to existing policies, Arch,

Fifer and Xanadu, respectively. Both Social Network and Me-

dia Service have a high number of workflows, but the former

has more functions with higher slack, leading to increased

batching, thereby resulting in the most reduction in con-

tainers spawned. Hotel Reservation has the least number of

workflows as well as the lowest overall slack for all functions,

resulting in the least reduction in the number of containers.

On the other hand, DProb and SProb spawn fewer containers

than Kraken as a consequence of not using Commonality and

Connectivity to augment function weights, while making

container allocation decisions. As a result, Kraken provisions

up to 21% more containers than both DProb and SProb for

the three applications. Note that, these additional containers

are necessary to reduce SLO violations.

6.1.2 End-to-End Response Times and SLO Compli-
ance:Figure 9 shows the breakdown of the average end-to-

end response times and Figure 10 juxtaposes the total number

of containers provisioned against the SLO Guarantees for all

policies and applications, averaged across all traces. From

these graphs, it is evident that Kraken exhibits comparable

performance to existing policies while having a minimal re-

source footprint. For the Social Network application, Kraken

remains within 60 ms of the end-to-end response time of

Arch (Figure 9a), which performs the best out of all policies

with respect to these metrics, while ensuring 99.94% SLO

guarantees (Figure 10a) . However, Arch uses 4x the number

of containers used by Kraken (Figure 10a).

Kraken also performs similar to Fifer, while using 58%

reduced containers for Social Network. From Figures 9 and

10, it can be seen that Xanadu has similar (or worse) end-

to-end response times than Kraken (up to 50 ms more), but

spawnsmore containers as well (up to 70%more) and satisfies

fewer SLOs on average (0.2% lesser). This can be attributed

to Xanadu’s container pre-deployment policy which causes

reactive scale outs as a result of MLP mispredictions. This ef-

fect is highlighted in applications such as Social Network and

Media Service which have relatively high MLP misprediction

rates (80% and 50%, respectively
2
)) due to the presence of

multiple possible paths (Table 2). Media Service suffers from

higher end-to-end response times, further exacerbating this

effect. Xanadu has only a 34% misprediction rate for Hotel

Reservation, due to the lower number of workflows, and is

seen to match Kraken in terms of SLOs satisfied (99.87%).

The breakdown of the average response times in Figure 9

shows that both Arch and Xanadu do not suffer from queue-

ing delays. This is because both policies spawn a container

per request, resulting in almost zero queueing. The relatively

high cold start-induced delay experienced by Xanadu can be

attributed to the reactive scaling it uses to cope with MLP

mispredictions. Kraken exhibits delay characteristics simi-

lar to Fifer owing to both policies having batching and a

similar container pre-deployment policy. However, Kraken

allocates fewer containers (57% lesser, on average across all

applications) along each workflow compared to Fifer. DProb

and SProb exhibit higher overall end-to-end response times

compared to Kraken, with SProb experiencing a dispropor-

tionately high queueing delay compared to its cold start delay.

This is because it uses statically assigned function weights,

which prevents it from being able to proactively spawn con-

tainers according to the varying user input. This results in

the majority of requests getting queued at the containers.

6.1.3 Analysis of Key Improvements:This subsection
focuses on the key improvements offered by Kraken in terms

of Container Utilization, Response Latency Distribution and

Energy Efficiency. Although we use specific combinations of

applications and traces to highlight the improvements, the

2
MLP misprediction rates are not shown in any Figure
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Figure 8. Real System: Stage-wise Breakdown of Containers spawned by each policy.
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Figure 9. Real System: Breakdown of Average End-to-End Response Times in terms of queueing delay, cold start delay and execution time.
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Figure 10. Real System: Comparison of Total Number of Containers spawned VS SLOs satisfied by each policy. The Primary Y-Axis denotes the number of

containers spawned, The secondary Y-axis indicates the percentage of SLOs met and the X-axis represents each policy.
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Figure 11. Real System: Comparison of Container Utilization (a.k.a. average

#jobs executed per Container) and Response Time Distribution.

results are similar for other workload mixes as well.

Container Utilization: Figure 11a plots the average num-

ber of requests executed per container (Jobs per container)

across all functions in Social Network for the Poisson trace.

An ideal scheme would focus on packing more number of

requests per container to improve utilization without caus-

ing SLO violations. Kraken shows 4x, 2.16x and 2.06x more

container utilization compared to Arch, Fifer, and Xanadu

respectively. This is because Kraken limits the number of

containers spawned through function weight assignment

and request batching. DProb and SProb both exhibit higher

utilization compared to Kraken (15%) as a result of spawning

fewer containers overall, owing to not accounting for crit-

ical and common functions while provisioning containers.

Consequently, they exhibit up to 0.24% more SLO Violations

compared to Kraken, for this workload mix.

Latency Distribution: The end-to-end latency distribution

for all policies for the Social Network application with the

Twitter trace is plotted in Figure 11b. In particular, Arch,

Fifer and Kraken show comparable latencies, with P99 val-

ues within 700ms while remaining well within the SLO of

1000ms. However, Arch and Fifer use 3.51x and 2.1x more

containers than Kraken to achieve this. The tail latency (mea-

sured at P99) for DProb almost exceeds the SLO, whereas it

does so for SProb. Kraken manages to avoid high tail latency

by assigning augmented weights to key functions, thus, help-

ing it tolerate incorrect load/probability estimations. SProb

does worse than DProb at the tail because of its lack of adap-

tive probability estimation. Kraken makes use of 21% more

containers to achieve the improved latencies. Xanadu expe-

riences a sudden rise in latency towards the tail, with its

P99 latency being 100ms more than that of Kraken, while

using 96% more containers. This is due to Xanadu’s MLP

misprediction and the resultant container over-provisioning.

Energy Efficiency: We measure the energy-consumption

as total Energy consumed divided over total time. Kraken

achieves one of the lowest energy consumption rates among

all the policies considered, with it bettering existing policies,

namely, Arch, Fifer and Xanadu by 26%, 14% and 3% respec-

tively (for the workload mix of Media Service application

with Wiki trace ) as depicted in Figure 12a. These savings
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Figure 12. Real System: Normalized Energy Consumption of all Schemes

and Response Time Distribution of Kraken, Comm Only and Conn Only

Application Kraken Comm Only Conn Only

Social Network (99.94%, 284) (99.91%, 276) (99.89%, 256)

Media Service (99.73%, 572) (99.66%, 561) (99.64%, 552)

Hotel Reservation (99.87%, 316) (99.77%, 290) (99.74%, 282)

Table 5. Real System: Comparing (SLO Guarantees,#Containers Spawned)

against Comm Only and Conn Only.

can go up to 48% compared to Arch for applications like So-

cial Network. The resultant energy savings of Kraken are a

direct consequence of the savings in computation and mem-

ory usage from the fewer containers spawned. Only DProb

and SProb consume lesser energy than Kraken (4% lesser),

due to their more aggressive container reduction approach.

6.1.4 Ablation Study:This subsection conducts a brick-

by-brick evaluation of Kraken using Conn Only and Comm

Only, schemes that exclude Commonality and Connectivity

components from Kraken, respectively. From Table 5, it can

be seen that Comm Only spawns 8% more containers than

Conn Only for Social Network. This difference is lesser for the

other applications. Upon closer examination, we see that this

is due to functions having different degrees of Commonality

and Connectivity. Moreover, the majority of functions whose

Commonality and Connectivity differ, have a high batch size,

thereby reducing the variation in the number of containers

spawned. Following this, we observe that the variation in the

number of containers in Social Network is mainly due to the

significant difference in the Commonality and Connectivity

of the Compose Post function whose batch size is only one.

There is lesser difference in containers spawned by Comm

Only, Conn Only and Kraken for Media Service because we

have implemented Kraken with a cap on the additional con-

tainers spawned due to Commonality and Connectivity when

the sum of their values exceeds a threshold. This threshold is

exceeded in Media Service for the majority of functions. Due

to the difference in container provisioning, the difference

in response times between the three schemes is evident at

the tail of the response time distribution (Figure 12b). Comm

Only and Conn Only are seen to exceed the target SLO at the

99th percentile. The tail latency of Kraken, in comparison,

grows slower and remains within the target SLO.

6.2 Simulator Results
Since the real-system is limited to a 160-core cluster, we

use our in-house simulator, which can simulate an 11k-core

cluster, to study the scalability of Kraken. We mimic a large

scale Poisson arrival trace (𝜇 = 1000rps), Wiki (𝜇 = 284 rps)

Policy Poisson Wiki Twitter
Med Tail Med Tail Med Tail

Arch 336 568 336 568 336 599

Fifer 362 612 360 611 373 833

DProb 371 746 368 753 381 1549

Kraken 366 634 358 633 371 974

SProb 395 1101 382 1073 395 1610

Xanadu 343 723 340 774 340 1244

Table 6. Simulator: Median and tail latencies (in ms) averaged across all

applications for the three traces

and Twitter (𝜇 = 3332 rps) traces. Figure 13 plots the con-

tainers spawned versus the SLO guarantees for each appli-

cation for all traces. The simulator results closely correlate

to those of the real system. Kraken is seen to reduce con-

tainer overprovisioning when applications have numerous

possible workflows and enough slack per function to ex-

ploit. Notably, Kraken spawns nearly 80% less containers for

Social Network in comparison to Arch. Container overpro-

visioning is inflated 15% more than the corresponding real

system result, due to the large-scale traces. Table 6 shows

the median and tail latencies of each policy averaged across

all applications for the three traces. The trend we observe

is that traces with higher variability, such as the Twitter

trace, affect the tail latencies of policies more harshly than

the other, more predictable, traces. Nevertheless, Kraken is

resilient to unpredictable loads as well, with tail latencies

always remaining within the SLO (1000 ms). However, the

tail latencies of DProb and SProb sometimes exceeds the SLO,

since they don’t use Commonality and Connectivity. It is

observed that Xanadu also violates the SLO for the Twitter

trace, owing to the reactive scale-outs resulting from MLP

mispredictions.

6.2.1 Sensitivity Study:This subsection compares Kraken

against Oracle, which is an ideal policy that is assumed to

be able to predict future load and all path probabilities with

100% accuracy and also has request batching. Consequently,

Oracle does not suffer from cold starts and minimizes con-

tainers spawned. Figure 14 shows the breakdown of total

number of containers spawned for each application, aver-

aged across all realistic large-scale traces using the simulator.

It is observed that Kraken spawns more containers ( 7%)

than Oracle, on average. This is due to Kraken’s load/path

probability miscalculations and the usage of Commonality

and Connectivity to cope with this. It is seen that Kraken

spawns 10% more containers for Media Service and 6% more

for Hotel Reservation and Social Network. This may be due to

Media Service having higher path unpredictability than Hotel

Reservation (Table 2) as well as lower slack per function than

Social Network (Figure 7). From Figure 15b, it is observed

that Oracle, being clairvoyant, spawns containers in accor-

dance with the peaks and valleys of the request arrival trace.

Kraken, while spawning more containers, also is seen to lag

behind the trend of the trace due to load prediction errors.

Performance under Sparse Load: Analysis of logs col-

lected from the Azure cloud platform [39] shows request
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Figure 13. Simulator: Comparison of Total Number of Containers spawned VS SLOs satisfied by each policy. The Primary Y-Axis denotes the number of

containers spawned, The secondary Y-axis indicates the percentage of SLOs met and the X-axis represents each policy.
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Figure 14. Simulator: Comparison of Function-wise Breakdown of Con-

tainers spawned by Kraken and Oracle.

0

150

300

450

600

Oracle Kraken Oracle Kraken Oracle Kraken

Social Network Media Service Hotel
Reservation

R
e

s
p

o
n

s
e
 T

im
e

 (
m

s
)

Queueing Cold Start Execution Time

(a) E2E Response Time Breakdown.

275

290

305

320

600

700

800

1 10 19 28 37 46 55

R
e

q
u

e
s

ts
/s

e
c

o
n

d

#
 C

o
n

ta
in

e
rs

Sampling interval (minutes)

Oracle Kraken Trace

(b) Containers spawned over time.

Figure 15. Simulator: Comparison of End-to-End (E2E) Response Times

and Containers Spawned Over Time (60 minutes) of Kraken and Oracle.

volumes that are much lighter (average of 2 requests/hour)

than those of the traces we have considered. Moreover, more

than 40% of requests show significant variability in inter-

arrival times. To deal with such traces, we modified Kraken’s

load prediction model to predict future request arrival times,

owing to the sparse nature of the trace. We also spawn con-

tainers much more in advance than the predicted arrival time

and also keep them alive for at least a minute before evicting

them from memory, to account for arrival unpredictability.

It is seen that Kraken meets the SLOs for all requests from

the lightly-loaded trace over 18 hours while averaging 0.85

memory-resident containers at any given second
3
. Other

existing policies such as Arch and Fifer exhibit similar perfor-

mance and resource usage when their prediction models and

keep-alive times are similarly adjusted. Xanadu, on the other

hand, while having 0.74 memory-resident containers per sec-

ond, suffers from 55% SLO Violations on average across all

applications as a result of MLP mispredictions whose effects

are exacerbated in this scenario, due to low request volume.

Varying SLO: Table 7 shows the SLO guarantees and num-

ber of containers spawned for existing policies as well as

Comm Only and Conn Only, when the SLO is reduced from

1000ms to a value 30% higher than the response time of the

slowest workflow in each application. The resultant SLOs

3
These results are not shown in any graph.

Trace Arch Fifer Kraken Xanadu Comm Only Conn Only

Wiki (99.91%, 2737) (99.90%, 2092) (99.86%, 1396) (99.66%, 1737) (99.78%, ) (99.75%, )

Twitter (99.72%, 45,107) (99.63%, 34,210) (99.50%, 22,377) (99.10%, 25,132) (99.22%, ) (99.15%, )

Table 7. Simulator: Comparing (% SLO met,# Containers Spawned) against

Existing Policies after Varying the Target SLOs.

are 500ms, 910ms and 809ms for Social Network, Media Ser-

vice and Hotel Reservation respectively. Reducing the SLO, in

turn, can potentially reduce the batch sizes of functions as

well. Moreover, the reduced SLO target results in increased

SLO violations across all policies. However Kraken, is able to

maintain at least 99.5% SLO guarantee and spawns 50%, 34%

and 15% less containers compared to Arch, Fifer and Xanadu,

respectively. It can be seen that the difference in SLO compli-

ance between Kraken, Comm Only, and Conn Only increases

due to the reduced target SLO. This difference, in terms of

percent of SLO violations, changes from being at most 0.1%

to being between 0.1 to 0.35%. This is a result of Kraken being

more resilient at the tail of the response time distribution as

it uses both Commonality and Connectivity while spawning

containers. In comparison, Comm Only and Conn Only fail

to spawn enough containers for each important function

as they do not consider both these parameters, resulting

in increased tail latency and further exacerbates the SLO

violations.

7 Concluding Remarks
Adopting serverless functions for executing microservice-

based applications introduces critical inefficiencies in terms

of scheduling and resourcemanagement for the cloud provider,

especially when deploying Dynamic DAG Applications. To-

wards addressing these challenges, we design and evalu-

ate Kraken, a DAG workflow-aware resource management

framework, for efficiently running such applications by uti-

lizing minimum resources, while remaining SLO-compliant.

Kraken employs proactive weighted scaling of functions,

where the weights are calculated using function invocation

probabilities and other parameters pertaining to the appli-

cation’s DAG structure. Our experimental evaluation on a

160-core cluster using Deathstarbench workload suite and

real-world traces demonstrate that Kraken spawns up to 76%

fewer containers, thereby improving container utilization

and cluster-wide energy savings by up to 4× and 48%, respec-

tively, compared to state-of-the art schedulers employed in

serverless platforms.
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