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Abstract—Today’s datacenters are increasingly becoming di-
verse with respect to both hardware and software architectures in
order to support a myriad of applications. These applications are
also heterogeneous in terms of job response times and resource
requirements (eg., Number of Cores, GPUs, Network Speed) and
they are expressed as task constraints. Constraints are used for
ensuring task performance guarantees/Quality of Service(QoS) by
enabling the application to express its specific resource require-
ments. While several schedulers have recently been proposed that
aim to improve overall application and system performance, few
of these schedulers consider resource constraints across tasks
while making the scheduling decisions. Furthermore, latency-
critical workloads and short-lived jobs that typically constitute
about 90% of the total jobs in a datacenter have strict QoS
requirements, which can be ensured by minimizing the tail
latency through effective scheduling.

In this paper, we propose Phoenix, a constraint-aware hybrid
scheduler to address both these problems (constraint awareness
and ensuring low tail latency) by minimizing the job response
times at constrained workers. We use a novel Constraint Re-
source Vector (CRV) based scheduling, which in turn facilitates
reordering of the jobs in a queue to minimize tail latency. We
have used the publicly available Google traces to analyze their
constraint characteristics and have embedded these constraints
in Cloudera and Yahoo cluster traces for studying the impact of
traces on system performance.

Experiments with Google, Cloudera and Yahoo cluster traces
across 15,000 worker node cluster shows that Phoenix improves
the 99th percentile job response times on an average by 1.9×
across all three traces when compared against a state-of-the-art
hybrid scheduler. Further, in comparison to other distributed
scheduler like Hawk, it improves the 90th and 99th percentile
job response times by 4.5× and 5× respectively.

Keywords—Scheduling; Hybrid; Heterogeneous Data Center;
Constraint-aware; Resource Management; Performance

I. INTRODUCTION

With the emergence of cloud computing, datacenters are

getting increasingly diverse both in terms of the hardware and

system software stack. Datacenter schedulers play an important

infrastructure component role in such cloud environments for

efficient matching between application demands and available

cluster resources. A well-architected scheduler with optimized

resource management policies has direct bearings on reducing

operational and capital expenditures (CapEx and OpEx) [1] of

datacenters as it boosts the utilization of resources leading to

reduction in the number of machines and datacenter resource

requirements to support the applications demands. Today’s

Early Late

C
en

tr
al

iz
ed

D
is

tr
ib

ut
ed

Hybrid Schedulers

Task binding to Queue

Constraint aware
Constraint unaware

Mercury

Sparrow

Hawk 
Eagle
H k

Phoenix

Mesos
Borg

Mesos

Choosy 

10M

100B

10B

1B

100M

N
um

b
er

 o
f j

ob
s 

ex
ec

ut
ed

 p
er

 d
ay

Yacc-D

C
on

tro
l P

la
ne

Fig. 1: Design space of datacenter schedulers.

Cluster schedulers are expected to take advantage of the

growing heterogeneity in datacenter infrastructure to perform

smart workload placements. The applications are also having

diverse needs in terms of their Quality of Service, placement

preferences, and also require special hardware like GPUs,

FPGAs, Storage type (SDD,HDD), etc,. [2]–[7]. This trend is

expected to grow as we see more applications take advantage of

application specific hardware accelerations like web search [8],

Memcached [9, 10] and convolutional neural networks [11]

using FPGAs. Thus, constraints provide a mechanism to

take advantage of hardware heterogeneity by the applications.

They also enhance scheduler effectiveness in better matching

applications requirements with cluster hardware resources.

This results in improved resource utilizations and faster job

response times. Constraints also aid in specifying job placement

preferences to ensure fault tolerance (eg.,Multiple jobs of the

same application are spread out across racks) and application

level optimizations (micro-architecture, compiler version, etc).

To meet the diverse needs of such applications, the architec-

ture and design of cluster schedulers have evolved considerably.

Specifically, there have been multiple variants of scheduler

designs – monolithic, disaggregated, distributed, etc., each

with its own advantages and disadvantages [16, 21]. Existing

schedulers can be broadly classified based on the scheduler

logic design and the time when a task commits itself to

a worker queue as shown in Figure 1. The volume of the

scheduling decisions heavily depend on such design choices.

Schedulers like Mesos [13] and Borg [12] are designed to be
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Scheduler Control Plane Binding Queuing Queue Reordering Load Balancing Placement constraints

Borg [12] Hierarchical Early Global � Static �

Mesos [13] Hierarchical Early Global � Static �

Paragon [14] Monolithic Early Global � Static �

Sparrow [15] Distributed Late Worker side � Static Trivial
Hawk [16] Hybrid Late Worker side � Stealing Trivial
Eagle [17] Hybrid Late Worker side SRPT Stealing Trivial
YacC+D [18] Hybrid Early Both SRPT Adaptive �

Tetrisched [19] Monolithic Early Global � Static Trivial
Choosy [20] Hierarchical Early Global � Static Single resource

Phoenix Hybrid Late Worker side CRV based Adaptive Multi resource

TABLE I: Comparison of Phoenix and other contemporary datacenter schedulers.

hierarchical (see Table I). These schedulers suffer from the

following limitations:

1) Their control plane is centralized and does not scale along

with the resources under high load/contention scenarios.

2) Production schedulers are frequently subjected to routine

maintenance and updates, and in case of a failure of one

scheduler node, it could cascade and affect the whole

datacenter operations.

3) They also bind their tasks early to the worker queue, thus

losing the flexibility of task migration and are ill suited

for the class of short-lived interactive applications which

dominate (80-90% [22]) the datacenter.

On the other side of the spectrum, schedulers like Sparrow [15]

are completely distributed and the control plane is disaggre-

gated. They are limited by:

1) Lack of capabilities to handle today’s complex application

scheduling requirements.

2) Insufficient information on the status/load of worker nodes.

3) Agnostic of any interference from co-located applications.

4) Poor job response around times for short tasks due to head

of the line blocking.

In recent times, hybrid scheduler design has gained prominence

as it improves upon the pitfalls of other contemporary designs.

The recent class of schedulers like Hawk [16] and Eagle [17]

combine the respective advantages of both centralized and

distributed schedulers. Table I provides a comprehensive

summary of design choices of existing schedulers. Most of the

hybrid and distributed schedulers make use of techniques such

as Shortest Remaining Processing Time (SRPT), Sticky Batch

Probing (SBP) and task sampling, which do not adapt well to

multiple placement constraints scenario as they are agnostic of

job placement constraints. SRPT based task reordering does

not always result in faster job response times as the delay

experienced by tasks asking for the constrained resources vary

based on the resource availability. SBP and task sampling are

poor estimators for queue waiting times while scheduling for

jobs with resource constraints. We further discuss this detail

in Section III-C.

Though prior works like Tetrisched [23] and Choosy [20]

have addressed the task scheduling issues in presence of

constraints, they are built around Yarn [24] or Mesos [25],

which operates with a global job placement queue with

slots-based centralized logic as seen in Figure 1. However,

their design choices does not scale to the demands of the

growing class of latency-critical applications like interactive

web services and streaming analytics-based queries.

Thus, in this paper, we propose a constraint-aware scalable

scheduler, called Phoenix1. The salient features of Phoenix is

described in the last row of Table I, it is a hybrid scheduler with

late binding of tasks to worker queues. It uses a novel Constraint

Resource Vector (CRV) based task reordering mechanism

across constrained queues to holistically improve the job

turnaround times. Constraint Resource Vector (CRV) is defined

as a vector of node resources like <cpu, mem, disk,

os, clock, net_bandwidth>. We use CRV demand

(tasks asking for the resource) and supply (total available

resources) ratio of constrained resources to determine the

estimated queuing delay and an M/G/1 queuing model is used

to dynamically reorder tasks based on its CRV ratio values to

improve the overall job turnaround times.

We make the following contributions in this paper:

1) We propose a constraint-aware hybrid scheduler that does

dynamic task reordering using a novel Constrained Resource

Vector (CRV) based node monitor. Phoenix is developed

on top of the open source Eagle scheduler and is extended

to handle constraint specification of jobs.

2) We employ a proactive admission control by negotiating

resources for tasks in which all the constraints could not be

satisfied. This is achieved by succinct sharing of demand-

supply information of the available resources.

3) We develop a queuing model to estimate the waiting times

of highly contentious resources. We use this information to

reorder tasks in the worker queue leading to improved job

turn around times.

4) We analyze the open source Google traces to characterize

different types of constraints and embed these constraints to

other public traces from Yahoo and Cloudera for enabling

constraint-aware scheduling study.

5) We conduct experiments with Google, Cloudera and Yahoo

traces and demonstrate that Phoenix can improve the 99th

percentile job completion times on an average by 1.9x and

5x over constraint aware Eagle (Eagle-C) and constraint

aware Hawk (Hawk-C), respectively by reducing the tail

1Phoenix is a mythological bird that is cyclically regenerated. Since the
scheduler improves over its predecessors, attaining a new life.

319978



0 500 1000 1500 2000 2500 3000

Job queuing time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Hawk-C

Eagle-C

Yacc-d

Baseline

(a) Yahoo trace with constraints.
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(b) Cloudera trace with constraints.

Fig. 2: Job queuing times for two different production traces with task placement constraints

latency of short jobs. Phoenix does not affect the fairness

and the execution times of the other long and unconstrained

jobs across the cluster.

II. BACKGROUND AND MOTIVATION

A. Constraint Based Job Requests in Cloud Schedulers

Datacenters are heterogeneous in terms of CPU (eg., ISA,

clock frequency, number of cores), presence of accelerators

(eg., coprocessors, GPUs, FPGAs), memory (eg., bandwidth,

capacity), network (eg., bandwidth, technology) and storage

(eg., capacity, technology, redundancy) configurations. For

example, a job may request for two server nodes belonging

to x86 ISA with a network speed of 1 Gbps between them.

Cloud vendors allow tasks to subscribe to a combination of

heterogeneous resources using task constraints. Recent studies

show that the tasks that subscribe to different constraints in

a production datacenter account for more than 50% of all

the tasks [2, 26]. Thus, any scheduler that is aware of the

constraints in jobs can substantially benefit from using the

information in its scheduling decisions.

B. Impact of Constraints in Existing Systems

To understand how constraints are used in reality and study

their relative importance, we summarize relevant information

from Google trace [27] and Utilization Multiplier [2] in Table II.

the second column shows the relative slowdown in various jobs

requesting for a specific constraint w.r.t to a no-constraint job.

As can be seen, the trace runs for ≈ 25M jobs and 80% these

jobs suffer a ≈ 2× slowdown waiting for a server node of the

requested ISA/CPU cores/network speed to become available.

Also, a slowdown of 1.7× can be seen for other resources

or machine properties like OS kernel, CPU frequency etc.,

although such requests do not dominate this trace. The results

indicate that constraint awareness in scheduling can potentially

mitigate the job slowdowns that might have occurred due to

poor placement policies.

C. Constraint-Awareness in Existing Systems

We now discuss two classes of schedulers, namely, cen-

tralized and distributed schedulers (as shown in Table I) to

understand how constraints are handled in the traditional

systems.

1) Centralized Schedulers: Centralized schedulers such as

Hadoop fair scheduler [28], the Capacity scheduler [29],

Yarn [24], Choosy [20] and Tetrisched [23] uses slot-based

models as a simplification to denote all resources as a

homogeneous set. But as noted in Dominant Resource Fairness

(DRF) [30], (i) these centralized schedulers are inefficient for

allocating/managing multiple fine-grained resources; and (ii)

their centralized control plane becomes an overhead in scaling

along with greater volume of job requests/constraints.

2) Distributed and Hybrid Schedulers: The state of the art

hybrid schedulers (e.g., Eagle [17]) does SRPT based task

scheduling to improve the overall job turn around times at

the worker queues. In case of jobs coming in with multiple

types of resource requests in form of constraints each machine

might have different utilization rates. In such cases, SRPT may

not be as effective as it is for a single homogeneous resource

(e.g. CPU). This is illustrated in Figure 3, where the inter-

arrival patterns of the jobs are highly sporadic with valleys

and peaks. Generally during high loads, the peaks significantly

contribute to the tail latency of a short job’s completion times.

It is observed that, the job queuing delay of constrained tasks

cascade its delay into that of subsequent job’s completion times.

When this happens, it takes a long time to reach the same QoS

state as seen in Figure 3 the ”unconstrained” execution.

This trend is common across all the existing schedulers

like Hawk [16] and Sparrow [15] for different production

traces well. It is seen from Figures 2b and 2a, the job queuing

times for two different production traces Cloudera and Yahoo

respectively. The baseline is the task queuing delay in case

of jobs without constraints. Hawk-c scheduler incurs heavy

queuing delays across all the percentiles of task run times. The

tasks scheduled by Eagle-C and Yacc-d experience 2 to 2.5×
task queuing delays because of constraints.

In summary, just the SRPT based queue reordering would not

improve the overall turn around times of job’s with tasks which

has specific resource constraints as the demands for various

resources vary across different jobs. Also, the high volume of

requests make a strong case for distributed-scheduler instead
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Fig. 3: Google trace executed in Eagle-C. Queuing delays of constrained and unconstrained jobs over time.

Task Constraints Relative Slowdown % Share Occurrence

Architecture (ISA) 2.03× 80.64 20412140

Number of Nodes 1.96× 0.28 71103

Ethernet Speed 1.91× 0.18 30128

Number of Cores 1.90× 18.28 2856749

Maximum Disks 1.90× 8.57 1665117

Kernel Version 1.77× 0.21 52722

Platform Family 1.77× 0.05 14473

CPU Clock Speed 1.76× 0.16 42688

Minimum Disks 0.91× 0.66 168656

TABLE II: Distribution of constraints in as reported in Google cluster
traces [27]; Relative Slowdown: Slowdown of a constrained job w.r.t
an equivalent but unconstrained job.

of a fully centralized logic. Since latency critical tasks account

for ≈90% of the total requests, the scheduler proactively needs

to be aware of the expected delay due to the individual task

constraint or combination of constraints (and hence infer the

utilization of various resources) to schedule tasks.

Hence, there is a need for a scalable scheduler that could

handle tasks with multiple task constraints without compromis-

ing on the QoS by dynamically adapting itself to the changing

demand to supply ratio of constrained resources.

III. MODELING AND SYNTHESIZING CONSTRAINTS

A. Classification of Constraints

Constraints can be broadly classified into three categories:

hard, soft, and placement constraints. A job can potentialfly

have one or more constraints of any category and typically

the hard constraints are strict requirements without which a

job cannot run (eg., number of CPUs, minimum memory,

requirement for a machine with public IP address). On the

other hand, soft constraints (eg., CPU clock speed, network

bandwidth) can be relaxed or negotiated by trading off the job’s

performance. The various constraints from Google datacenter

traces [27] are enlisted in Table II. The placement constraints

or combinatorial constraints are affinity preferences of group

of tasks of a particular application like Hadoop or Spark that

prefer to be scheduled close to each other due to data locality

reasons. Few applications might prefer its tasks to spread out

across on multiple racks for fault tolerance guarentees (eg., disk

failure or network switch failure at a node or a rack might bring

down the whole progress of the application, hence independent

tasks are spread out). These tasks include constraints in terms

of rack id. For example, Mesos [13] allows jobs to specify its

locality preferences. But they do not have provisions for tasks

to avail for different heterogeneous resources in the datacenter.

These affinity constraints have a significant impact on task

scheduling delay by a factor of 2 to 4 times [22].

B. Synthesizing Task Constraints

We make use of the publicly available Google’s cluster

workload traces [27], which is a month-long production trace

collected across 12,500 nodes. We do not go over the details

of the job heterogeneity and task distributions as it has been

analyzed by prior works [2, 22] in detail. Google has obfuscated

its original values before making it public. The task demands

in form of constraints and the associated values are also hashed

in the traces. Hence, we use the constraint frequency vector of

Google cluster-C from the paper [2] which gives the frequency

distribution and semantics of each individual constraint and

correlated it with the constraint frequency distribution of the

Google cluster trace [27]. We use this to augment the hashed

entries with real constraint attributes and values, which is given

in Table II.

In order to synthesize constraints for the other production

traces like Yahoo and Cloudera, we use the benchmarking

technique proposed by Sharma et al., [2] to characterize and

incorporate constraints in to Yahoo and Cloudera traces. We

further cross validate our model with the task and machine con-

straint occurrence fraction from [2] to ensure the correctness of

the correlation. Thus, we synthesize representative constraints

for workload traces like Yahoo and Cloudera other than Google

for evaluation. This model is representative of the distribution

of different task constraints in a production datacenter. It is

claimed in the paper [2] that the model accuracy is close to

87% in case of Google-C [27] cluster since the model was

trained on statistics collected from the traces across the three

biggest clusters in Google (Cluster-A, B, C).

We modify Sparrow, Eagle and Hawk schedulers to handle

jobs with constraints in production traces like Yahoo, Cloudera

and Google. We refer to this version as Sparrow-C, Eagle-

C and Hawk-C respectively, whose design specifications are

detailed in the results section. It is seen from Figure 4 that

99th percentile of job response times has gone up uniformly

across all the traces by an average of 1.7× in case of Eagle-C.

This trend worsens when the utilization of the data center goes

up. As the inter arrival rates of short jobs surge, schedulers

like Sparrow-C [15] and Hawk-C [16] perform even worse

than Eagle-C, in such cases where we observe an average

of 20× slowdown in job response times in 99th percentile
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(a) Yahoo (b) Cloudera (c) Google

Fig. 4: Short job response times for unconstrained jobs normalized to constrained jobs for 50th,90th,99th percentiles scheduled with Eagle-C.

job response times across all the workloads. State-of-the-art

distributed and hybrid schedulers do not adapt to these sudden

surges of constrained jobs since the schedulers are agnostic of

the expected delay due to individual task constraints.

C. Requirements for Scheduling Constrained Jobs

1) Job response times: The strategy that most of the hybrid

schedulers [17, 18] use in improving the over all job response

times is SRPT. Reordering tasks based on shortest remaining

processing times of individual tasks reduces straggler tasks

thus mitigating the tail latency. But naive SRPT has fairness

issues and is an overkill at high loads as it leads to starvation

of other longer jobs or jobs with diverse task run times.

Greedily prioritizing the task with least delay would benefit

intermittently but would not contribute to the overall average

job response times and comes at the cost of fairness of the

other unconstrained jobs. The scheduler needs to intelligently

adapt its logic based on the dynamic supply demand surges of

constrained resources.

2) Admission Control: Recall that a job could arrive with one

or more constraints. The scheduler has to negotiate resources

and satisfy these constraints even at peak congestions across

all the worker queues. There could be situations where two

out of three constraints of the job could be satisfied in

which, a scheduler could relax in case of soft constraints with

performance trade offs. Schedulers like Choosy [20] fail to

capture such scenarios of multi-resource constraints.

3) Late Binding: Job response time is a cumulative factor

of queuing time, placement latency and algorithm execution

time. To avoid the task being committed to a single machine,

schedulers like [15]–[17] use delayed probing which places

probes instead of tasks. Batch sampling [15] and probe

aggregation of jobs [17] are used to predict the queues with

least lengths. Note that, these techniques are not always the

accurate estimators of queue waiting times (see Equation 1),

as the queues with least lengths do not always correlate with

least turnaround times. Thus, distributed schedulers need a

low overhead queue waiting time estimator in order to make

near optimal scheduling decisions when compared to fully

centralized scheduler.

4) Load Balancing: Production schedulers are expected to

improve the overall resource utilization of the datacenter. They

employ load balancing techniques such as work stealing from

idle workers. This becomes challenging when the scheduler is

distributed because it is agnostic of the load and surges across

the entire cluster. Stealing based techniques fail to provide

accurate scheduling decisions due to the fact that not all the

tasks could be relocated or stolen as they might have resource

specific constraints. Also task migration has its own overheads

as it might not to fit within the task’s SLA guarantees. As a

result, a constraint aware hybrid scheduler is needed to provide

optimal task placements at sub-millisecond latency. We propose

Phoenix, which overcomes the above challenges by proactive

admission control and CRV based queue reordering described

in the following section.

IV. PHOENIX ARCHITECTURAL OVERVIEW

A. Phoenix Constraint-aware Scheduler

Phoenix is a heterogeneity and constraint-aware hybrid

scheduler, which does QoS aware task placements and re-

ordering to the queues at the worker nodes. The scheduler is

aware of both job heterogeneity (long or short jobs) and node

heterogeneity (architectural). It uses centralized scheduler for

scheduling long jobs and distributed schedulers for short jobs,

which interacts with CRV_Monitor shown in Figure 5 and

keeps track of the Constraint Resource Vector (CRV) ratio of

individual constraints, which is used in dynamic reordering of

constrained tasks. Phoenix improves over the existing hybrid

schedulers by introducing the CRV_Monitor unit as shown

in Figure 5 which monitors the resource supply and demands

from incoming constrained jobs every heartbeat cycle. Each

individual worker queue can satisfy one or more constraints

hence these queues are inherently heterogeneous. The CRV of

a node is a vector of node resources represented as <cpu,
mem, disk, os, clock, net_bandwidth>. For ev-

ery node, the CRV_Monitor calculates the ratio of demand

and supply for every constraint per heartbeat interval and

updates the CRV_Lookup_Table. Using this information

we further estimate the waiting time (E[W ]) for every queue

using Pollaczek-Khinchin M/G/1 queuing theory [31] model

322981



Fig. 5: Overview of job scheduling in Phoenix.

based estimator (Equation 1). The first part of the dot-product

directly correlates to the load at the constrained worker queues

and the second part represents the variability in estimated task

execution time. To minimize the waiting time at every worker

queue, both the load and variance in estimated task execution

times should be minimal. Since we assume that each slot has

independent task queues for execution M/G/1 model is sufficient

to estimate the queue waiting times. Phoenix uses centralized

scheduler for long jobs and distributed scheduler for short jobs

and thus, reducing the variance of the estimated task execution

times at any worker node. This minimal variance guarantees

the stationary assumptions of P-K Equation 1 valid, ensuring

the accuracy of the estimator. In Equation 1, ρ is the worker

load collected periodically from all workers for every heartbeat

interval and E[S] is expected service time for the tasks in that

particular worker. E[S] of a worker is a combination of the

execution time of the currently running task and the cumulative

sum of estimated individual task execution time [31]. In other

words E[S] is (1 ÷ λ ) and ρ is (λ ÷ μ) where λ is the average

inter arrival time and μ is the average service time.

E [W ]M/G/1 =
ρ

1−ρ
·

E
[
S2
]

2E [S]
(1)

Phoenix estimates waiting times (E[W ]) values for each

worker queues for every heartbeat interval. Also, in the same in-

terval, we proactively warmup the CRV_Lookup_Table with

CRV values. During peak resource demands, when the CRV

values increase beyond a fixed threshold (CRV_Threshold),

Phoenix initiates the CRV_Based_Reordering algorithm

1. Otherwise, Phoenix does SRPT based reordering. This

is because for any c.f.m.f.v (continuous, finite mean, finite

variance) distributions with heavy tail property, at least 99% of

the jobs have a lower response times under SRPT than any other

scheduling techniques (eg., FIFO, SJF) when ρ<0.9 [31]–[33].

Therefore, Phoenix opportunistically adapts itself to the CRV

based reordering from SRPT during peak loads. Reordering

based on the CRV values on congested worker queues curtails

the tail latency as it significantly reduces the execution time

of straggler tasks. Phoenix does not consider the utilization ρ
as the overall datacenter rather for each type of resource as

mentioned in the Table II achieving fine grain heterogeneous

resource management. In case of tasks over subscribing a

particular resource type it is quite for ρ to be over 0.9 during

bursts.

Phoenix uses late binding for flexible task placements in

order to avoid being committed to a queue early on. When a

constrained task arrives, the corresponding proxy task probes

are sent to the worker nodes that could satisfy the constraints.

The probable nodes to which the probes are sent is decided by

light weight bit vector message exchanges across the distributed

schedulers similar to Eagle’s Succint State Sharing (SSS)

technique [17]. The CRV_Monitor aggregates the potential

list of worker nodes that could satisfy the constraints that tasks

demanded. For example, a job with 10 tasks with an ISA and

Kernel version constraints, if the probe ratio is set to two, then

20 probes are sent to the probable list of nodes that satisfies

both the constraints.

Algorithm 1 CRV-based reordering

1: procedure CRV MONITOR(Queue)

2: while every Heartbeat interval do

3: for worker in all workers do

4: worker(E[W ])← Estimate Waiting Time(CRV)

5: end for

6: for all Constraints

7: CRV Lookup Table(Constraint)

8: for worker in all workers do

9: if worker(E[W ]) > Qwait threshold then

10: CRV based reordering(Queue)

11: end if

12: end for

13: procedure ESTIMATE WAITING TIME

14: for task inqueued tasks

15: μ ← Avg(last serviced tasks)

16: λ ← Avg(inter arrival rate)

17: E[W ]← Equation1

18: end for

19: procedure CRV BASED REORDERING(QUEUE)

20: Max CRV← getMax(CRV)

21: for task in Queue.tasks[CRV] > Max CRV

22: task.slack++

23: if task.slack < Slack theshold then

24: Reorder Task(task)

25: end if

26: end for

B. Algorithm Implementation

As explained above, the utilization of the resources in terms

of constraints is periodically maintained at the CRV_Monitor.
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Fig. 6: Constraints supply/demand distribution.

As a result, Phoenix constantly monitors the number of

constrained and unconstrained tasks along with the impact

of delay on tasks due to these constraints. This periodic

synchronization of information across the distributed schedulers

poses an overhead. Phoenix mitigates this by following: First,

having the CRV vector available offline. Second, the distributed

scheduling decisions are loosely coupled with CRV_monitor

every periodic heartbeat intervals ensuring the scheduler

being synchronized with the CRV_monitor. Third, Phoenix

improves the job completion times by reordering tasks based

on their CRV values.

The algorithm 1 uses the CRV_MONITOR procedure to

govern the CRV ratio of every constraint. When this ratio

goes beyond a set CRV_threshold, we mark all the

workers whose E[W ] is greater than Qwait_threshold.

For those workers which are marked, Phoenix invokes

the CRV_based_reordering function to reorder the

tasks based on CRV values. We conservatively set the

Qwait_threshold which translates to peak utilization in

the datacenter. The CRV_threshold for each constraint is

determined based on the task execution statistics given in the

Table II. Max_CRV function calculates the maximum of the

values in CRV vector and reorders the tasks having the same

MAX_CRV value. We also implemented a starvation threshold

(Slack_threshold) which ensures the fairness among all

tasks. The Slack_threshold limits the number of times a

task can be bypassed (preempted) because of other reordered

tasks) within a queue. The complexity of the algorithm is

split into two parts. First, for every heartbeat interval, the cost

of waiting time estimation is O(n), where n is the number

of workers. Since they could be calculated in parallel for all

workers, thus reducing the complexity. Second, during peak uti-

lization where the E[W ] shoots beyond Qwait_threshold,

CRV_based_reordering is invoked. The complexity of

CRV_based_reordering is O(p), where p is the number

of probes per worker queue. This is the same complexity of

executing SRPT based reordering during median utilizations.

V. EVALUATION METHODOLOGY

A. Implementation

We implemented Phoenix on a trace-driven simulator which

is used to evaluate Eagle [34] and Sparrow [35]. At each worker

node, there is one slot for execution and a queue for tasks

waiting to be executed. The publicly available cluster trace

from Google [27] is used as the primary trace for evaluation. In

addition, we also use Yahoo and Cloudera traces from [36, 37].

We observed that the cluster load is bursty and unpredictable

with the peak to median ratio ranging from 9:1 to 260:1 in these

traces. In general the task execution times are Pareto bound,

where short jobs constitute of 80% to 90% of the total jobs.

From the Table III, which gives constraint distribution of the

jobs across all three traces. It is observed that approximately

50% of the tasks has one or more constraints.

Google cluster trace has task constraints with attribute names

and values. In addition to it, We synthesize task placement

constraints for Yahoo and Cloudera traces based on the model

described in Section III-B. On average, 50% of the tasks

are constrained and every job is heterogeneous with multiple

task placement constraints. Figure 6 shows the distribution

of constraints for all the jobs in the Google trace. Every

job would have at least one to a maximum of six unique

constraints. A constraint is usually accompanied with one of

the three comparison operators (<,>,=) as described in the

paper [2] (e.g.,Kernel_version > INTEGER_value,

Ethernet_Speed = FLOAT_value). One can observe

from Figure 6 that there are 33% of jobs that ask for two

constraints, but only 12% of the worker nodes could satisfy the

job’s requirements. As the incoming jobs demand more number

of constraints, it becomes harder to satisfy all the constraints

(chances drop to as low as 5% in case of 6 constraints shown

in Figure 6). However, the number of jobs that ask 4 or more

constraints is cumulatively about 20%, and the remaining 80%

of the jobs had only three or less constraints.

We explore the design space to figure out the optimal probe

ratio and heartbeat interval. We find the optimal probe ratio to

be 2 as a tradeoff between mis-estimation penalty vs redundant

proxy probes being sent to constrained worker queues. We

conservatively fix the network delay (a round trip time to

synchronize with CRV node monitor) to 0.5 milliseconds, and

the cost to calculate CRV ratio is assumed minimal due to the

distributed nature of Phoenix refer Section VI-C. To prevent

starvation of unconstrained jobs being bypassed by CRV, we

compare the performance to constrained jobs in Figure 9. We

fix the starvation threshold value to 5, as the number of times a

individual task waiting in the worker queue could be bypassed.

B. Evaluation

We evaluate the proposed scheduler across the three pro-

duction traces for various cluster utilization loads by varying

the number of nodes in the cluster. We focus on moderate to

heavily loaded scenarios as the constrained tasks incur more

queuing delay due to SRPT. We use metrics [50th, 90th, 99th]

percentile of job completion times to compare Phoenix against

existing state-of-the-art scheduling schemes like Eagle, Hawk

and Sparrow to handle constraints. Since we observed increased

queuing delay for constrained jobs during peak congestions

as observed from Figures 2a and 2b, it is evident that all

the existing schedulers experience tail latencies in case of
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(a) Yahoo (b) Cloudera (c) Google

Fig. 7: 50/90/99th percentile response times for short jobs scheduled with Phoenix normalized to Eagle-C scheduler (lower the better)

(a) Yahoo (b) Cloudera (c) Google

Fig. 8: 50/90/99th percentile response times for long jobs scheduled with Phoenix normalized to Eagle-C scheduler (lower the better)

Workload Nodes Constrained
Tasks

Unconstrained
Tasks

Reordered
tasks

Short
jobs

Yahoo 5000 251404 263240 5227 91.56%
Cloudera 15000 1972428 1925052 817470 95%
Google 15000 6602875 6265616 1717145 90.2%

TABLE III: CRV reordering statistics.

short jobs with constraints. Our focus is toward optimizing

for tail latencies of constrained jobs. Since the scheduler is

stochastic in selecting workers to send the sample probes to

them, we present the results averaged over five runs to ensure

consistency.

VI. RESULTS AND ANALYSIS

A. Comparison of Phoenix to Eagle-C

Figure 7 depicts the improvements in short job response

times for varying cluster loads, where the average cluster

utilization is shown as the line (aligned to right y-axis). It

is observed that, as we increase the number of nodes from

15,000 to 19,000 in the cluster in case of Google trace, the

average cluster utilization drops from 86% to 43%. The job

response times for all the three traces are normalized w.r.t

Eagle-C for varying cluster loads (shown in bars aligned

with left y-axis). As can be seen, Phoenix improves by

taking only 52% of the job response time of Eagle-C (1.9×)

consistently across all the traces in high utilizations (with

4000 nodes). As the average cluster load (or utilization)

Fig. 9: Comparing queuing delay of jobs in Google trace.

drops, the scheme improvements saturate and converge to

the baseline Eagle-C at lower cluster utilizations (last bar).

The best improvements of 1.9× come from 85% average

utilization in all cases because the CRV based reordering

is dynamically invoked only when the constrained queues

are congested beyond the CRV_threshold, which usually

happens in high utilizations. During peak congestions Phoenix

does not rely on SBP and instead dynamically estimates the wait

time of highly constrained nodes as discussed in Section IV-A.

The Phoenix scheduler interacts with the CRV node monitor

to reorder the constrained tasks and alleviate the congestion

by holistically improving the overall job response times of
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Fig. 10: Phoenix normalized to Hawk-C for Google short jobs.

Fig. 11: Phoenix normalized to Sparrow-C for Google short jobs.

constrained jobs. This results in faster job response times along

with reduced queuing delays across the constrained queues. The

improvements are better for Google traces compared to Yahoo

and Cloudera, because Google traces have more variance in

the constraint distribution in case of short jobs which results

in diverse constraints across individual jobs. Phoenix does not

affect the long job response times as shown in the Figure 8,

it is noted that CRV based reordering did not affect the job

turnaround times of long jobs. Phoenix also avoids starvation

of (i) constraint tasks with relatively lower CRV values, and (ii)

unconstrained tasks in a worker queue by limiting the number

of times a task can be bypassed by other tasks, as implemented

in Eagle-C.

B. Phoenix compared with other distributed/hybrid schedulers

We also compare Phoenix to two other distributed and hybrid

schedulers namely Sparrow and Hawk.

1) Phoenix compared with Hawk-C: Figure 10 shows job

response times of Phoenix normalized to Hawk for Google

trace. Job response time at the 90th percentile for Phoenix

takes only between 21% (at 86% utilization) to 80% (at 40%

utilization) as that of Hawk-C. This translates to a improvement

of 4.7× and 1.25× respectively. At 99th percentile Phoenix

takes only between 18% (at 86% utilization) to 76% (at 40%

utilization) of the job response time of Hawk-C. Again this

translates to 5.5× and 1.3× improvement of job response times

respectively.

Since Hawk does not do the SBP and SRPT based reordering,

it performs very poorly in peak congestions, and this worsens

the problem even more in presence of task constraints. Hawk

uses random task-stealing in which the probability of task

stealing is very low during high loads. In high loads Phoenix

estimates the queue waiting times and reorders tasks in those

queues, which in turn leads to faster job response times.

2) Phoenix compared with Sparrow-C: As Sparrow is

distributed, it is completely agnostic of task runtimes of jobs

(does not distinguish between long and short jobs). Hence, the

short job turn around times are worsened due to head of the

line blocking of long jobs. Thus, Sparrow by itself handles

placement constraints in a trivial way. In Sparrow, constrained

resources are sampled randomly to place tasks. But they do not

handle hard and soft constraints. But Phoenix being a hybrid

scheduler, mitigates this problem of starvation of short jobs

due to head of the line blocking by dynamically rescheduling

the probes of constrained tasks based on CRV.

Figure 11 shows the improvements of job completion

times of Phoenix normalized to Sparrow-C for Google trace.

Similar to the other schemes Phoenix also outperforms Sparrow

by taking only 48% of the job completion times at the

50th percentile with 86% cluster utilization to 95% of the

job response times at the 99th percentile with 46% cluster

utilization. Note that, the variation between 90th and 99th

percentiles are not similar to the other schemes matching the

reasons explained above.

C. Performance Overheads of Phoenix

The performance of phoenix is dependent on certain impor-

tant design choices. First is the frequency of CRV node monitor

(heartbeat interval) at which CRV manager synchronizes with

worker nodes to calculate CRV ratios. This determines the

accuracy of waiting time estimations and round trip time

overheads. After a detailed sensitivity analysis which takes the

trade-offs between queue waiting time estimation accuracy and

round trip time overheads, we empirically set the frequency

to 9s. In contrast Yacc+D and Yarn uses 5s as their heartbeat

interval for communicating with the node manager. Since we

conservatively assume the network communication latency

as constant 0.5ms, the network cost to communicate with

every worker to initiate reordering becomes negligible. Next,

the associated delay to compute CRV is also negligible as it

involves trivial logic on simple bit vectors.

D. Breakdown of Benefits of Phoenix

Figure 9 shows the job queuing delay for short jobs in two

scenarios: (i) 90th and 99th percentiles of both Phoenix and

Eagle-C constrained jobs, and (ii) 90th and 99th percentiles

of both Phoenix and Eagle-C unconstrained jobs. We use this

data to explain how a constraint-aware algorithm such as CRV

can improve the overall queuing delay for both constrained

and unconstrained jobs: It is evident that Phoenix significantly

improves the 99th percentile latency for both the constrained
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and unconstrained jobs. In Eagle-C, the constrained jobs

experience longer queuing delays due to poorer management

of constrained resources and in turn, these jobs also stall the

execution of other unconstrained tasks in the same queue. Note

that, in such a scenario SRPT reordering would further delay

the queuing delay of tasks as it is agnostic of the constrained

and unconstrained jobs.

Phoenix on the other hand uses the intelligent CRV based

reordering which identifies the constrained jobs and reorder

them to execute faster, during these times of peak congestion.

This aids in overall speedup for both type of jobs while ensuring

the overall fairness of other tasks in the queue.

In summary, we evaluate Phoenix against contemporary

distributed and hybrid schedulers like Sparrow, Hawk-C and

Eagle-C to find that the tail latency of jobs improves by 1.72×,

4× and 1.9× when compared to jobs without constraints.

It improves the average job queuing delays by 1.9× when

compared to the state-of-the-art Eagle-C scheduler. It also

improves the overall job response times by 2× and 1.6× when

compared against Sparrow-C and Hawk-C respectively.

VII. RELATED WORK

In this section, we summarize the features of state-of-the-art

schedulers shown in the Table I by broadly classifying these

schedulers into three categories based on their design.

A. Centralized and Hierarchical Schedulers

First generation schedulers were fully centralized like the

Hadoop capacity scheduler [29] that did slots-based resource

management, which lead to poor resource utilizations as the

slots-based model suffered from resource fragmentation and

did not scale very well in terms of scheduling throughput [15]

to meet the sub-second job response times SLAs. To address

these issues, Mesos [13] and Omega [21] were designed to

be hierarchical. Though Mesos handles placements constraints

it does not expose the heterogeneity of the datacenter through

hard and soft constraints. All docker based resource managers

like Mesosphere [25], Kubernetes [38], and Nomad [39] neither

handle task level constraint nor does dynamic task reordering

based on resource demand surge.

B. Fully Distributed Schedulers

Distributed schedulers like Sparrow [15] handle placement

constraints naively. Sparrow randomly samples from the

constrained resource and schedules pending tasks to such

sampled queues. But the scheduler does not support task

reordering and placement preference constraints. Apollo [40]

supports only capacity constraints but does not support task

placement constraints. In contrast to Sparrow, Apollo uses much

complex wait time estimation based mechanism to minimize

the job scheduling delay when compared to our light weight

CRV based estimations.

C. Hybrid Schedulers

Mercury [41] is a heterogeneity aware hybrid design. It uses

containers that could be queued to schedule short tasks. Mercury

does not optimize for dynamic surges in resource demands

since it does not handle constraints inherently. Hawk [16] and

Eagle [17] line of schedulers are very close to our design

in terms of scheduler scalability, but they do not adapt and

optimize for job turn around times of constrained jobs.

D. Constraint-aware Schedulers

Most of the related schedulers that are constraint-aware are

extended on top of resource negotiators like Yarn which is

centralized or two-level like Mesos. Neither of the design

choices is optimal for latency critical short jobs. For example,

Choosy [20] is a max-min based fairness scheduling in which

hard constraints are handled. It is an extension on top of Mesos

and hence it suffers from the same scalability and early binding

issues while incorporating soft constraints for latency-sensitive

tasks. On the other hand, task share fairness [42] handles

constraints on heterogeneous workloads. But it prioritizes user

level fairness metric in sharing constrained resources instead of

the job turn around times as a fairness metric. Tetrisched [23]

handles hard placement constraints using a complex constraint

definition language called space-time request language (STRL)

to do plan ahead reservations in Yarn. Constraint definition

language for short lived latency sensitive tasks is a overkill

and has a learning curve for end users.

VIII. CONCLUSION

In this paper, We identify the shortcomings of the existing

hybrid and distributed schedulers like Eagle and Sparrow,

specifically focus in improving tail latency for tasks with

constraints. Motivated by our observations, we propose Phoenix,

a hybrid constraint-aware scheduler, which uses a centralized

scheduler for long jobs and distributed schedulers for short jobs.

We analyzed publicly released Google traces to characterize

different types of constraints and used a synthesizing model

to augment Cloudera and Yahoo traces. We proposed a

Constraint Resource Vector (CRV) metric to represent the

resource supply/demand based task reordering to improve

overall job sojourn times across the distributed task queues. We

evaluate Phoenix against Eagle-C with production workload

traces from Yahoo, Cloudera and Google, and demonstrate

improvements in 99th percentile job response time by 1.9×.

Phoenix when compared to Hawk-C and Sparrow-C with

Google traces improves the tail latency by 5.5× and 2×,

respectively. For mixed workloads with unconstrained and

constraint jobs, Phoenix also improves unconstrained job

response times by 2×. Further, the CRV based reordering

does not affect the long job response times along with ensuring

the fairness of the other unconstrained tasks.
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