
Minimizing Cost and Maximizing Performance for
Cloud Platforms

Jashwant Raj Gunasekaran
The Pennsylvania State University

Abstract
We are witnessing the rapid growth of cloud computing

with the proliferation of tenants adopting cloud for elas-
ticity, availability, and flexibility for a plethora of applica-
tions. To efficiently cater for different tenant requirements,
cloud providers have steadily evolved to offer a myriad of re-
source and service types which inherently complicates the
cloud adoption process. On the other hand, the perpetuating
growth of cloud tenants in turn impel providers to expand
datacenters to cope with the tenant demand. The objective
of this proposal is to maximize the performance and mini-
mize the cost for both tenants and cloud providers, by pro-
viding efficient means of managing resource allocations for
their applications. Towards this, the proposal comprises of
three intertwined tasks. First, we start from a tenant per-
spective, with the first two tasks aimed at investigating the
primary reasons for performance-cost inefficiency. Second,
from a provider perspective, the third task investigates the
primary reasons for performance-energy inefficiency in dat-
acenters. All the three tasks can collectively improve the
performance and cost efficiency of emerging applications
in next generation cloud platforms.
CCS Concepts: • Computer systems organization →

Real-time systems; • Scheduling and Resource Man-
agement;

Keywords: public-cloud, cost, performance, efficiency

ACM Reference Format:
Jashwant Raj Gunasekaran. 2020. Minimizing Cost and Maximiz-
ing Performance for Cloud Platforms. In 21st International Mid-
dleware Conference Doctoral Symposium (Middleware ’20 Doctoral
Symposium), December 7–11, 2020, Delft, Netherlands. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3429351.3431747

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Nether-
lands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8200-7/20/12…$15.00
https://doi.org/10.1145/3429351.3431747

1 Introduction
Cloud computing has emerged as an attractive computing

paradigm, where both hardware and software resources can
be leased from a cloud provider to achieve better economy
at scale, elasticity, availability and flexibility of resources
for executing a wide range of scientific and enterprise ap-
plications. It has essentially become a foundation for digital
business that encompass newer class of data intensive ap-
plications such as machine learning (ML) which have high
computational demands along with Service Level Objective
(SLO) requirements. Cloud computing bears the tremen-
dous advantage, that frees tenants (customers) from invest-
ing upfront on clusters to cater peak loads, by offering on-
demand resource provisioning. Furthermore, public clouds
have steadily evolved to attract a large fraction of tenants
by offering a more convenient pay-as-you-go service model.
Owing to these prolific advantages, the customer-adoption
for cloud continues to grow rapidly as tenants of varying
sizes endure cloud as a first class deployment option. Ac-
cording to the 2020 cloud report by Flexera [4], 20% of en-
terprises spend more than $12 million per year on public
clouds. Further, more than 50% of enterprise workloads and
data are expected to be in a public cloud within 12 months.

On the other hand, to cope with the perpetuating demand
of cloud tenants, there is a massive growth in public cloud
spending both in terms of capital expenditure (CapEx) and
operating expenditure (OpEx) [32]. Large-scale providers
such as Amazon EC2 [10], Microsoft Windows Azure [6],
Google Compute Engine (GCE) [18] and Alibaba Cloud [1]
host tens of thousands of applications on a daily basis. Ac-
cording to Gartner [3] the projected revenues for different
cloud services are more than 350 billion dollars. Therefore
there is a profound growth, from both aspects of cloud-
migration and cloud infrastructure spending.

2 The Problem
An illustration of the complex interaction between cloud

tenants and providers spanning across physical servers, run-
time systems and applications is shown in Figure 1. Due to
the proliferation of cloud-bound tenants, it is well-known
that cloud providers offers a plethora of resource types for
tenants to choose from, which in-turn complicates the cloud
adoption process. Specifically, the primary factors associ-
ated with the resources such as resource provisioning la-
tency, resource demand estimation (autoscaling) and billing
complexity, play a crucial role in determining tenant satis-
faction. As a result, cloud-bound tenants face both a “cost

29

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands J.R. Gunasekaran, et al.

Request Placement

Provider Resource Management Layer

Public Cloud Resources

Tenant Resource Management Cost

Performance

Latency

Power

Utilization

Energy

Physical Servers

Resource Selection

Bin-Packing Load Balancing

Applications

Azure ML Baremetal
Serverless

Functions

Cloud Resources

Load Balancing &Autoscaling
T

P

Figure 1. Cloud system stack depicting the different components
for both tenants and provider.
wall” (not able to run cost-effectively on the cloud) and a
“performance wall” (difficulty in choosing and extracting
the best performance from the resources rented). Further-
more, these aspects are enlaced to each other – there is an
inherent tension between keeping cost low of vs. maintain-
ing the performance high.

On the other hand, from a provider’s outlook, the in-
creased spending by cloud-providers on Capex without
paying attention to data-center utilization results in poor
Opex efficiency. Especially for public cloud providers, over-
provisioning servers in order to curtail tail latency [38, 41]
during peak loads of tenant applications, further accentu-
ates the under-utilization problem. Each server in a datacen-
ter incurs a one-time cost of several thousands of dollars
(Capex), while they continuously embrace Opex in terms
of monthly electric utility bills for both the peak power
draw as well as the aggregate energy use. Prolonged under-
utilization of servers leads to wasted resource and power,
thereby reducing the energy efficiency of the entire dat-
acenter [17, 30]. Therefore at the provider level, platform
providers face a “utilization wall”(not able to fully utilize
all cluster resources).

3 The Proposal
This proposal adopts a three pronged approach towards

holistically addressing the above mentioned inefficiencies
from both cloud tenant and provider perspectives. First,
we start from a tenant perspective (T), with the first
two tasks aimed at investigating the primary reasons for
performance-cost inefficiency. More specifically, we fo-
cus on ML inference applications to improve the cost and
performance in terms of accuracy and latency. Towards
this, we characterize the recent public offering like server-
less functions to help alleviate resource provisioning la-
tency delays incurred by traditional VMs. Further to im-
prove ML inference performance we focus on ensemble

learning [8] techniques. Second, from a provider perspec-
tive (P), the third task investigates the primary reasons for
performance-energy inefficiency in datacenters. Due to
the rapid adoption of serverless functions [33], providers
face critical challenges to ensure high server utilization
while guaranteeing the fast startup latencies and instant
scalability. Towards this, we plan to expose application char-
acteristics that can be exploited by the provider to employ
optimal resource management decisions.
Interplay:The three tasks are complementary to each other
such that, the first two tasks can jointly optimize perfor-
mance, cost and latency of hosting ML applications for ten-
ants. The third task improves energy efficiency of datacen-
ters while guaranteeing the same application performance
for tenants that can be obtained from the first two tasks.
3.1 Related Work

There are several research works that optimize for the
resource provisioning cost for various tenant applications
in the public cloud. These works broadly fall into two cate-
gories: (i) tuning the auto-scaling policy based on changing
needs [7, 9, 19, 24, 25, 34, 39], (ii) prediction-based proac-
tive provisioning auto-scaling policy [19, 23, 24, 28, 35].
Complementary to these approaches, we propose to user
serverless functions along with VMs for cost-effective au-
toscaling. Several works [11, 12, 29, 42] have tried to op-
timize ML inference serving cloud on cloud in terms of
cost, latency and accuracy . The most recent works are In-
Faas [40] and Clipper [13]. InFaas is limited to single model
selection and thus suffers from higher latencies to reach
higher accuracy. Clipper leverages ensembling [8] but em-
ploys static model selection policies and hence consume
more resources thereby incurs high cost. In this proposal
we focus on bringing the cost of ensemble learning com-
parable to single model inference. On the provider front, a
large body of work [14–16, 27, 31, 37] have looked at ensur-
ing SLO guarantees for latency critical applications by de-
veloping sub-millisecond scheduling strategies using both
distributed and hybrid schedulers. However, these policies
are not entirely suitable for managing serverless platforms.
Archipelago [36] is the most recent work that looks into
serverless platforms, still it over-provisions containers due
to non-batching nature.

4 Proposal Tasks
The individual tasks of this proposal are explained in de-

tail below.
4.1 Optimizing Latency and Cost

The first dimension of this proposal addresses the provi-
sioning latency problem at scale that significantly affects
the response latency of user-facing applications, without
compromising on cost. The end goal of this proposal is to
develop suitable resource selection policies to hide the provi-
sioning latency from inference execution latency and at the

30

Minimizing Cost and Maximizing Performance for Cloud Platforms Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands

sameminimize the cost hosting the applications. To this end,
we investigate how using serverless functions (lambdas) can
alleviate the shortcomings of VM-based auto-scaling. We
identify two key insights; (i) provisioning VMs for the peak
demands always leads to higher cost of deployment [22].
While, under provisioning VMs leads to severe SLO viola-
tions for queries [24, 38]. (ii) Using lambdas exclusively to
deploy the web service would overcome the SLO violation
problem, however doing so is not cost effective. Based on
these insights, we propose a Spock [21] hybrid resource pro-
curement system that exploits lambdas to be used with VMs.
4.1.1 DesignWe design Spock [21] which exploits lambda
to be used along with existing VM-based autoscaling mech-
anism. In Spock, whenever an RM cannot find a free slot in a
VM to serve a new request, it redirects the request to execute
in a lambda function. Then, based on the request rate, the
scaling policy decides to scale the number of VM instances
required to satisfy the current load. Until the required num-
ber of VMs instances are spawned, any query which cannot
be accommodated on VM is redirected to lambda functions.
4.1.2 ResultsWe evaluate Spock for ML inference work-
load using Wiki web server traces to mimic data-center ar-
rival rates.The resource procurement schemes used for com-
parison are: (i) deploying only via VMs with autoscaling
(autoscale); (ii) using conservative over-provisioning with
autoscaling i.e., acquire 1.5 times more resources than re-
quired (X-autoscale). With respect to these resource acqui-
sition schemes, we perform evaluations using two scale-out
policies namely (i) reactive and (ii) predictive. Figures 2a and
2b show that Spock reduces the cost and SLO violations com-
pared to autoscale and X-autoscale under both the scaling
policies for both theworkloadmixes. Spock, when compared
to autoscale, reduces SLO violations by 68% and 74% for both
the reactive and predictive scale-out policies, respectively.
At the same time, Spock also reduces cost by 15%, when em-
ploying the reactive policy. The cost savings are not signif-
icant for the predictive policy because it inherently avoids
VM over-provisioning, but results in more SLO violations.
4.2 Optimizing Performance and Cost

Our first proposal addresses the latency and cost prob-
lem, while considering performance of ML inferences as a
blackbox. Since the performance for inference is jointly de-
termined using both accuracy and latency, the second di-
mension of this proposal targets to improve the accuracy at
low latency for ML inference by leveraging ensemble learn-
ing, without increasing the resource usage. Towards this, we
identify two key challenges with respect to ensemble learn-
ing [13]. First, ensemble learning is inherently resource hun-
gry due to its distinctive nature of executing multiple infer-
ences for a single request. Second, the increased resource
footprint leads to excessive deployment costs.Themain goal
of this proposal is to reduce the resource-footprint of en-
semble learning and further reduce the deployment cost of

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

autoscale X-autoscale Spock

S
L

O
 v

io
la

ti
o

n
s

 (
%

)

N
o

rm
a

li
z
e

d
 C

o
s

t

Mix-1 Mix-2 SLO Violation

(a) Reactive autoscaling.

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

autoscale X-autoscale Spock

S
L

O
 v

io
la

ti
o

n
s

 (
%

)

N
o

rm
a

li
z
e

d
 C

o
s

t

Mix-1 Mix-2 SLO Violation

(b) Predictive autoscaling.

Figure 2. Cost savings and SLO violations of Spock.The cost is nor-
malized to the scheme that only uses lambda.

Strict Relaxed0

25

50

75

#V
M
s

InFaas Clipper Clipper-X Cocktail

(a) Number of VMs.
Strict Relaxed0

50

100

Co
st
($
)

InFaas Clipper Clipper-X Cocktail

(b) Cost Reduction.

Figure 3. Cost savings and VM reduction of Cocktail compared to
three schemes.
hosting ensembles in public cloud. To this end, we propose
Cocktail, which reduces the number of models used in an
ensemble and employs novel autoscaling mechanisms to re-
duce the VMs provisioned the same. Further, we propose to
use transient VMs to reduce the cost of deploying the en-
semble framework. Transient VMs are 70-80% cheaper than
standard VMs but can be interrupted at any time.
4.2.1 DesignThe overall design of Cocktail is two fold.
First from the model ensemble part, we characterized the
accuracy vs. latency of ensemble models and identified that
we can prudently select a subset of available models under
a given latency to achieve the desired accuracy. We lever-
age this in Cocktail, to design a novel dynamic model selec-
tion policy, which ensures the accuracy with significantly
reduced number of models. The dynamic policy downscales
the number of models, if more than 𝑁 /2 + 1 models vote
for the same inference. Further, to minimize the bias in pre-
dictions frommultiplemodels,Cocktail employs a novel per-
class weighted majority voting policy, which can effectively
breaks ties, thereby minimizing the accuracy loss.

Second from a resource management part, we show that
uniformly scaling resources for all models in the ensemble
leads to over-provisioning of resources. To minimize over-
provisioning, we build a distributed proactive weighted
auto-scaling policy that utilizes the importance sampling
technique to proactively allocate resources to every model.
The weights are determined by frequency in which a par-
ticular model is chosen for requests with respect to other
models in the ensemble. The weights are multiplied with
predicted load to scale instances for every model pool. Fur-
ther, Cocktail leverages transient VMs as they are cheaper,
to drastically minimize the cost for hosting model-serving
infrastructure in a public cloud. Note that, the resource pro-
curement scheme proposed in Spock can be employed in

31

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands J.R. Gunasekaran, et al.

Cocktail to avoid SLO violations when starting new spot in-
stances. We implement a prototype of Cocktail using both
CPU and GPU instances on AWS EC2 [5] platform and ex-
tensively evaluate it using different request-arrival traces.
4.2.2 ResultsWe compare Cocktail against (i) InFaas [40]
which is our baseline that employs single model selection
policy, (ii) Clipper [13] which uses static full model selec-
tion policy, and (iii) Clipper-X which is an enhancement to
Clipper with a naïve dynamic model selection that does not
utilize the vote-frequency based policy enforced in Cocktail.

Figure 3b plots the cost savings of Cocktail when com-
pared to InFaas, Clipper and Clipper-X policies. It can be
seen that, Cocktail is up to 1.4× more cost effective than In-
Faas for Strict workload. In addition, Cocktail reduces cost
by 25% and 20% compared to Clipper and Clipper-X poli-
cies, owing to its dynamic model selection policy, which
minimizes the resource footprint of ensembling. Figure 3a
plots the reduction in the number of VMs used by all four
schemes. It can be seen that, both Cocktail and Clipper-X
spawn 49% and 20% fewer VMs than Clipper.
4.3 Improving Datacenter Energy Efficiency

A large fraction of the user-interactive applications are
being hosted on serverless platforms, owing to its mone-
tary rewards in terms of pay-per-event billing. The third
dimension of this proposal identifies the inefficiencies in
existing serverless platform providers in terms of schedul-
ing and resource management (RM) for microservices (func-
tions). We specifically focus on function chains where multi-
ple stages of an applications (for instance complex ML infer-
ence pipelines) are connected as a series of inter-linked ser-
vices. Since, infinite scalability is a key aspect of serverless
computing, serverless providers inherently overprovision
servers to cope with the scaling demand. This work identi-
fies two key reasons that lead to resource over-provisioning.
First, the existing RM policies are imperceptive to the to-
tal end-to-end SLO of the function-chain leading to sub-
optimal resource scaling. Second, the RMs employ one-to-
onemapping of requests to containers.This inherently leads
to excessive number of containers being provisioned when
handling a sudden burst of requests. To this end, we propose
Fifer [20], a stage-aware resource provisioning and manage-
ment of function chains for serverless platforms. We plan to
leverage the “leftover slack” between function chains to de-
sign efficient batching-based resource management policies
thereby increasing the overall cluster utilization.
4.3.1 DesignWe design Fifer, to take advantage of slack
between function chains, towards calculating the batch-size
(queue length) to determine the optimal number of requests
that could be queued at every stage. Fifer is inherently stage
aware, such that it proportionally allocates slack to every
function stage of an application proportional to its execu-
tion time, and independently decides the scale-out thresh-
old for every stage. This inherently minimizes the number

Heavy Medium Light
Workload

0.0

0.5

1.0

#
C
on

ta
in
er
s

SBatch RScale BPred Fifer

(a) Containers norm. to Bline.

SBatch RScale BPred Fifer
Policy

0.0

0.2

0.4

0.6

0.8

E
ne

rg
y

C
on

su
m

pt
io

n

(b) Energy Savings norm. to
Bline.

Figure 4. Fifer : Container Reduction and Energy Savings.
of containers used in every stage. Further, to reduce SLO vio-
lations from cold-starts resulting from proactive scaling, we
design a novel LSTM-based [26] prediction model, which pro-
vides fairly accurate request arrival estimations even when
there are large dynamic variations in the arrival rate. We im-
plement Fifer as a part of the Brigade serverless workflow
framework [2] in a 80-core Kubernetes cluster and exten-
sively evaluate it with synthetic traces and comprehensive
real-world traces.
4.3.2 ResultsFigure 4a show the average number of con-
tainers spawned for different RMs across a mix of pipelined
ML inference workloads. It is evident that Fifer spawns the
least number of containers on average compared to all other
schemes except SBatch. This is because SBatch used fixed
number of containers even for changes in request load, thus
suffers frommore SLO violations. Figure 4b plots the cluster-
wide energy as an average of energy consumed across all
nodes in the cluster measured over intervals of 10 seconds
for the entire workload duration. It can be seen that Fifer
is 30.75% more energy efficient than the Bline (for heavy
workload-mix).This is because Fifer can accurately estimate
the number of containers at each stage, thereby consolidat-
ing all active containers to fewer nodes. The energy savings
are a result of servers only consuming idle power.

5 Concluding Remarks
Cloud and datacenters are becoming a quintessential crux

of computing systems. Owing to the increased demand
of tenants to host applications in cloud, datacenters are
expanding rapidly both in terms of size and types of re-
sources being offered. This proposal is aimed at understand-
ing and addressing some of the key bottlenecks in improv-
ing the performance-cost efficiency for both cloud tenants
and providers. As a part of future work, on we plan to op-
timize hosting ML training applications in cloud. Further,
we plan to understand resource management for dynamic
function-chains in serverless platforms.

Acknowledgements
I am grateful to my advisors Dr. Chita Das and Dr.

Mahmut Kandemir for their continuous guidance and sup-
port throughout my PhD. This research was supported in
part by NSF grants #1931531, #1955815, #1908793 and NSF
Chameleon Cloud project CH819640.

32

Minimizing Cost and Maximizing Performance for Cloud Platforms Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands

References
[1] 2020. Alibaba Cloud. https://alibaba.com/cloud.
[2] 2020. Brigade-workflows. https://brigade.sh/.
[3] 2020. Cloud Computing Market Projected To Reach $411B By 2020.

https://https://www.gartner.com/en/newsroom/press-releases/2019-
11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-
17-percent-in-2020.

[4] 2020. Flexera 2020 State of the Cloud Report. https://info.flexera.com/
SLO-CM-REPORT-State-of-the-Cloud-2020.

[5] Amazon. 2020. EC2 pricing. https://aws.amazon.com/ec2/pricing/.
[6] Microsoft Azure. 2020. Serverless Functions.

https://azure.microsoft.com/en-us/services/functions/.
[7] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. 2019.

BurScale: Using Burstable Instances for Cost-Effective Autoscaling in
the Public Cloud. In Proceedings of the ACM Symposium on Cloud Com-
puting. Association for Computing Machinery, New York, NY, USA.

[8] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M
Köhler. 2018. The power of ensembles for active learning in image
classification. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 9368–9377.

[9] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. 2018. Stratus:
Cost-aware Container Scheduling in the Public Cloud. In SoCC.

[10] Amazon Elastic Compute Cloud. 2011. Amazon web services. Re-
trieved November (2011).

[11] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao
Zhang, Michael J Franklin, Ali Ghodsi, and Michael I Jordan. 2014.
The missing piece in complex analytics: Low latency, scalable model
management and serving with velox. arXiv preprint arXiv:1409.3809
(2014).

[12] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo,
Joseph E. Gonzalez, Ion Stoica, and Alexey Tumanov. 2018. InferLine:
ML Inference Pipeline Composition Framework. CoRR abs/1812.01776
(2018). arXiv:1812.01776 http://arxiv.org/abs/1812.01776

[13] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Asso-
ciation, Boston, MA, 613–627. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/crankshaw

[14] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
2016. Job-aware Scheduling in Eagle: Divide and Stick to Your Probes.
In Proceedings of the Seventh ACM Symposium on Cloud Computing.

[15] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid datacenter scheduling. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 499–510.

[16] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared
Clusters. In Proceedings of the Sixth ACM Symposium on Cloud Com-
puting (Kohala Coast, Hawaii) (SoCC ’15). ACM, New York, NY, USA.

[17] Sina Esfandiarpoor, Ali Pahlavan, and Maziar Goudarzi. 2015.
Structure-aware online virtual machine consolidation for datacenter
energy improvement in cloud computing. Computers & Electrical En-
gineering 42 (2015), 74–89.

[18] Google. 2020. Cloud Functions. https://cloud.google.com/functions/
docs/,February2018.

[19] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley,
and Björn B. Brandenburg. 2017. Swayam: Distributed Autoscaling
to Meet SLAs of Machine Learning Inference Services with Resource
Efficiency. In USENIX Middleware Conference.

[20] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan
C.Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. 2020.
Fifer: Tackling Resource Underutilization in the Serverless Era. In
USENIX Middleware Conference.

[21] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan
Kandemir, Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019.
Spock: Exploiting serverless functions for slo and cost aware resource
procurement in public cloud. In IEEE CLOUD.

[22] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Cyan Subhra
Mishra, Mahmut Taylan Kandemir, and Chita R. Das. 2020. Towards
Designing a Self-Managed Machine Learning Inference Serving Sys-
tem inPublic Cloud. arXiv:2008.09491 [cs.DC]

[23] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle Os-
mond. 2014. Enabling Cost-Aware and Adaptive Elasticity of Multi-
Tier Cloud Applications. Future Gener. Comput. Syst. 32, C (March
2014), 82–98.

[24] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. 2018. Tributary: spot-dancing for elastic ser-
vices with latency SLOs. In ATC.

[25] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. 2017. Proteus: Agile ML Elasticity Through
Tiered Reliability in Dynamic Resource Markets. In Eurosys.

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation (1997).

[27] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hy-
brid centralized and distributed scheduling in large shared clusters.
In 2015 USENIX Annual Technical Conference (USENIX ATC 15). 485–
497.

[28] Adithya Kumar, Iyswarya Narayanan, Timothy Zhu, and Anand Siva-
subramaniam. 2020. The Fast andThe Frugal: Tail Latency Aware Pro-
visioning for Coping with Load Variations. In Proceedings of The Web
Conference 2020 (WWW ’20). Association for Computing Machinery,
New York, NY, USA.

[29] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. 2018. PRET-
ZEL: Opening the Black Box of Machine Learning Prediction Serving
Systems. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 611–
626. https://www.usenix.org/conference/osdi18/presentation/lee

[30] I. Narayanan, D. Wang, A. Mamun, A. Sivasubramaniam, H. K. Fathy,
and S. James. 2017. Evaluating energy storage for a multitude of uses
in the datacenter. In 2017 IEEE International Symposium on Workload
Characterization (IISWC). 12–21. https://doi.org/10.1109/IISWC.2017.
8167752

[31] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica.
2013. Sparrow: distributed, low latency scheduling. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 69–84.

[32] Khalid Rafique, Abdul Wahid Tareen, Muhammad Saeed, JingzhuWu,
and Shahryar Shafique Qureshi. 2011. Cloud computing econom-
ics opportunities and challenges. In Broadband Network and Multime-
dia Technology (IC-BNMT), 2011 4th IEEE International Conference on.
IEEE, 401–406.

[33] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[34] Prateek Sharma, David Irwin, and Prashant Shenoy. 2017. Portfolio-
Driven Resource Management for Transient Cloud Servers. Proc.
ACM Meas. Anal. Comput. Syst. 1, 1, Article 5 (June 2017), 23 pages.

[35] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. 2015. Spotcheck: Designing a derivative iaas cloud on the

33

Middleware ’20 Doctoral Symposium, December 7–11, 2020, Delft, Netherlands J.R. Gunasekaran, et al.

spot market. In Proceedings of the Tenth European Conference on Com-
puter Systems. 1–15.

[36] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019. Archipelago: A Scalable Low-Latency Serverless
Platform. arXiv preprint arXiv:1911.09849 (2019).

[37] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das. 2019. Kube-Knots: Resource Harvesting through Dynamic
Container Orchestration in GPU-based Datacenters. In CLUSTER.

[38] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan
Goyal, and Timothy Wood. 2008. Agile Dynamic Provisioning of
Multi-tier Internet Applications. TAAS (2008).

[39] ChengWang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
2017. Using Burstable Instances in the Public Cloud: Why, When and

How? SIGMETRICS (June 2017).
[40] Neeraja J. Yadwadkar, Francisco Romero, Qian Li, and Christos

Kozyrakis. 2019. A Case for Managed and Model-Less Inference Serv-
ing. In Proceedings of the Workshop on Hot Topics in Operating Sys-
tems. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3317550.3321443

[41] Jeong-Min Yun, Yuxiong He, Sameh Elnikety, and Shaolei Ren. 2015.
Optimal aggregation policy for reducing tail latency of web search.
In Proceedings of the 38th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. 63–72.

[42] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Ma-
chine Learning Inference Serving. In ATC.

34

	Abstract
	1 Introduction
	2 The Problem
	3 The Proposal
	3.1 Related Work

	4 Proposal Tasks
	4.1 Optimizing Latency and Cost
	4.2 Optimizing Performance and Cost
	4.3 Improving Datacenter Energy Efficiency

	5 Concluding Remarks
	References

