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Abstract—Datacenters are witnessing an increasing trend in
adopting microservice-based architecture for application de-
sign, which consists of a combination of different microservices.
Typically these applications are short-lived and are adminis-
tered with strict Service Level Objective (SLO) requirements.
Traditional virtual machine (VM) based provisioning for such
applications not only suffers from long latency when provision-
ing resources (as VMs tend to take a few minutes to start up),
but also places an additional overhead of server management
and provisioning on the users. This led to the adoption of server-
less functions, where applications are composed as functions
and hosted in containers. However, state-of-the-art schedulers
employed in serverless platforms tend to look at microservice-
based applications similar to conventional monolithic black-box
applications. To detect all the inefficiencies, we characterize the
end-to-end life cycle of these microservice-based applications
in this work. Our findings show that the applications suffer
from poor scheduling of microservices due to reactive container
provisioning during workload fluctuations, thereby resulting in
either in SLO violations or colossal container over-provisioning,
in turn leading to poor resource utilization. We also find that
there is an ample amount of slack available at each stage of
application execution, which can potentially be leveraged to
improve the overall application performance.
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I. INTRODUCTION

The advent of public clouds in the last decade has fueled

the proliferation of microservice-based applications. These

applications are usually comprised of multiple microser-

vices1 (called a microservice-chain) [1]. This trend is becom-

ing increasingly pervasive with large cloud providers, such

as Amazon [2], Facebook [3], and Netflix [4], having already

adopted the microservices application model [5]. Further,

the popularity of deep learning (DNN) based models and

their multi-faceted application to different domains has lured

application developers to train and host DNN models [6] as

microservice-based applications. Figure 1 shows the overall

framework of how a micro-service chain is deployed in the

public cloud. Typically, these applications demand a strict

SLO with tight response latencies, which is usually under

1000 ms [7]. Hence, mitigating end-to-end latency of a

1A microservice is the smallest granularity of an application performing
an independent function.

Figure 1: An overview of the framework used to host

Microservice Chains in public cloud.

microservice-chain is quintessential to provide a satisfactory

user experience especially for interactive applications.

The SLOs for such web-services are typically bound by

two factors (i) the resource provisioning latency, and (ii) the

actual application execution time. The majority of these ap-

plications usually execute within a few milliseconds [6], [8],

however, the provisioning times vary from a few seconds to

minutes depending on the type of resources being procured.

As opposed to using virtual machines (VMs), serverless

functions such as AWS Lambda [9], Azure functions [10],

IBM OpenWhisk [11] etc., have been adopted by application

developers to mitigate provisioning latencies, as well as to

abstract away the need for the users to provision or manage

resources. Serverless computing provides several advantages

such as (i) independent function hosting on containers,

(ii) simplified programming, and (iii) automatic instance

provisioning and elastic scaling for functions. However, they

introduce a new set of challenges in terms of schedul-

ing and resource management for the providers [12]. This

opens up new research avenues especially when deploying

microservice-chains in serverless platforms with strict SLO

requirements along with optimal resource utilization.

Existing schedulers always spawn a new container for

every incoming request if existing containers are busy [13].

This inherently leads to container over-provisioning while

handling a large number of requests. Furthermore, they are

unaware of the asymmetry between overall application exe-

cution time [14] and user-response latency (a.k.a slack), thus
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leading to sub-optimal request placements on containers.

This, in turn, leads to SLO violations, despite having over-

provisioned containers. These schedulers are also unaware of

the execution times of every microservice in an application.

This leads to poor container allocation per microservice,

thereby increasing the SLO violations. Additionally, when

there are large dynamic variations [15] in request arrival

rate, these schedulers fail to adapt rapidly as they cannot

predict the request rate.

II. CHARACTERIZATION

To better understand the above-mentioned challenges, we

characterize the end-to-end life cycle of microservice-based

applications and briefly summarize our findings below.

• Effects of Cold Starts: We quantify the implications

of cold-starts by executing a plethora of image recognition

web-services (which uses ML-inference functions) on AWS

Lambda. Our results show that cold-starts for different

services leads to a large disparity between the container

provisioning time when compared to application execution

time. For instance, turn-around time of certain inference jobs

were 2000 ms to 7000 ms, while the actual inference

execution time was only 300 ms. If SLO for the application

is set at 1000 ms, this leads to SLO violations due to

uncertain provisioning delays whenever there are cold starts.

Based on our observation, the existing schedulers make poor

request placement decisions causing SLO violations and

are also agnostic of inter-stage slack. Intuitively, by taking

advantage of available slack at each stage, one can smartly

queue requests at currently-busy containers to ensure optimal

container provisioning, while minimizing the overall SLO

violations due to cold starts.

• Exploiting Stage-wise Application Slack: Apart from

different execution times and SLO requirements, applica-

tions also have unequal execution times for every individual

stage. We profiled the runtime of well-known microservice

chains from Djinn&Tonic [8] benchmark suite and observed

that each stage within the application has widely varying

execution times and more than 50% of the execution time

is dominated by just one stage in the chain. Uniformly

scaling containers for every stage is not ideal, as the longest-

running stage would bottleneck the subsequent stages. In

such scenarios, it becomes essential to have stage-wise

container allocation policies based on each stage’s execution

times.

• Effects of Container Scaleout: Though request queu-

ing helps in reducing the SLO violations when there is plenty

of slack available, it still cannot help in hiding the cold-

start latencies encountered when starting up new containers.

Spawning new containers are inevitable especially when

there is dynamism in request rate, such as during a request

surge. To address these scaleout problem, we deduce that

proactive container provisioning policy can mitigate SLO

violations by spawning containers in advance. While cold-

start latencies can be reduced by OS-level optimizations, the

only way to hide them entirely is by proactive spawning of

containers

III. CONCLUSIONS AND FUTURE WORK

In this work, we identify the bottlenecks of existing

schedulers employed by serverless platform providers es-

pecially when hosting microservice chains. We discuss our

preliminary findings of (i) SLO violations due to cold starts,

(ii) need for exploiting inter-stage application slack, and

(iii) need for stage-wise container allocation policies. Our

future work includes building a comprehensive system that

leverages on our preliminary observations by building a

system that eliminates the above-mentioned inefficiencies.

We plan to evaluate our system using both real-system and

large scale simulations of real-world traces and production

serverless workloads.
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