Maximizing Resource Efficiency for Next Generation Cloud Platforms

Jashwant Raj Gunasekaran

Advisors: Dr. Mahmut T. Kandemir & Dr. Chita R. Das High Performance Computing Lab

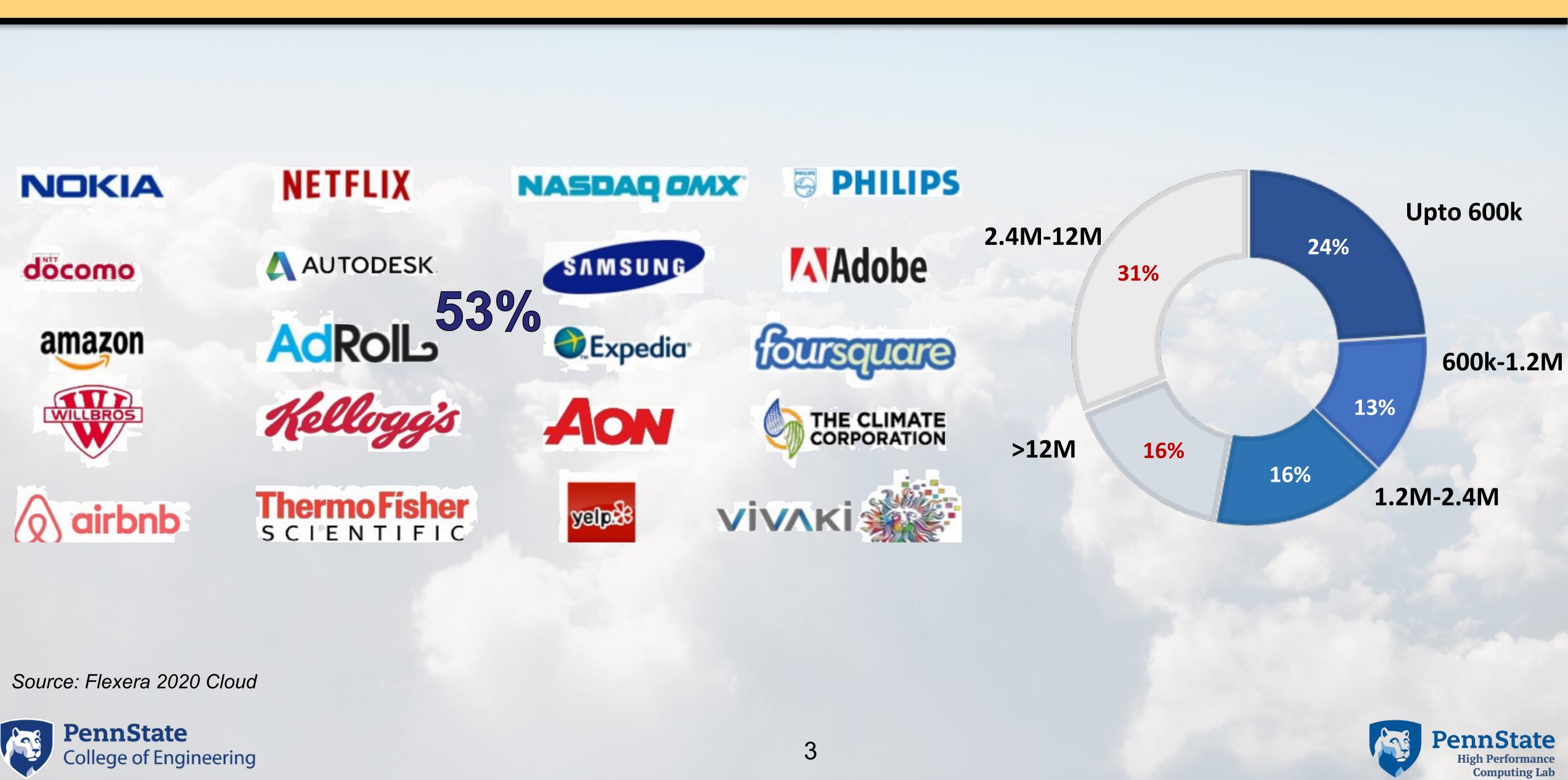
> Dissertation Defense May 6, 2021

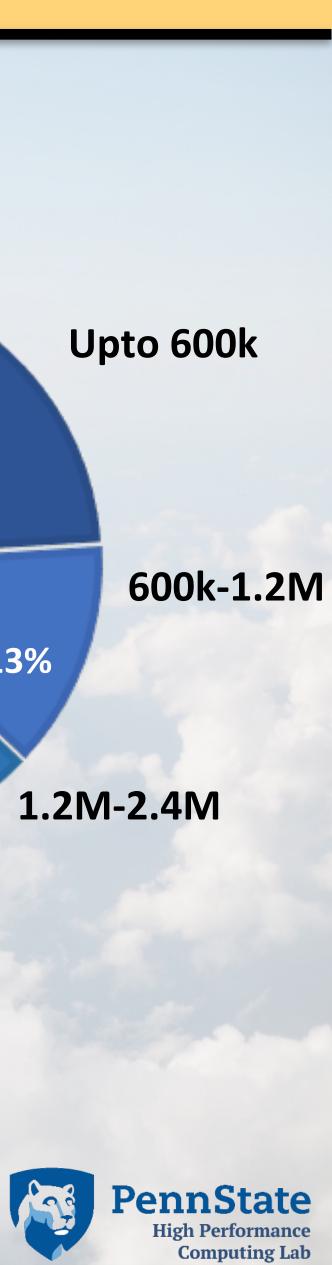
Research Philosophy

Cloud is about how you do computing, not where you do computing!

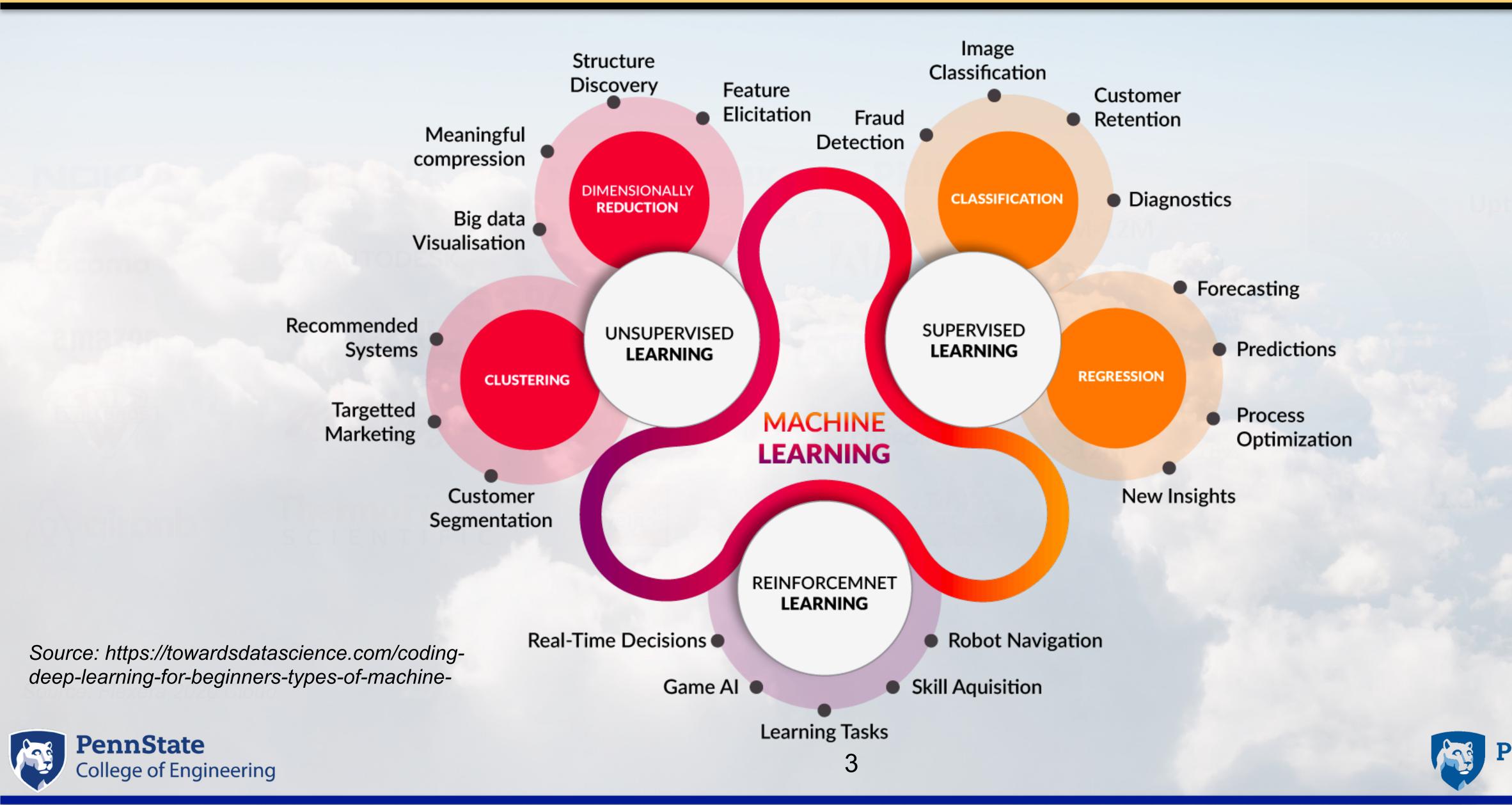
Paul Maritz, Former CEO, Vmware

PUSH FOR MORE CLOUD ADOPTION

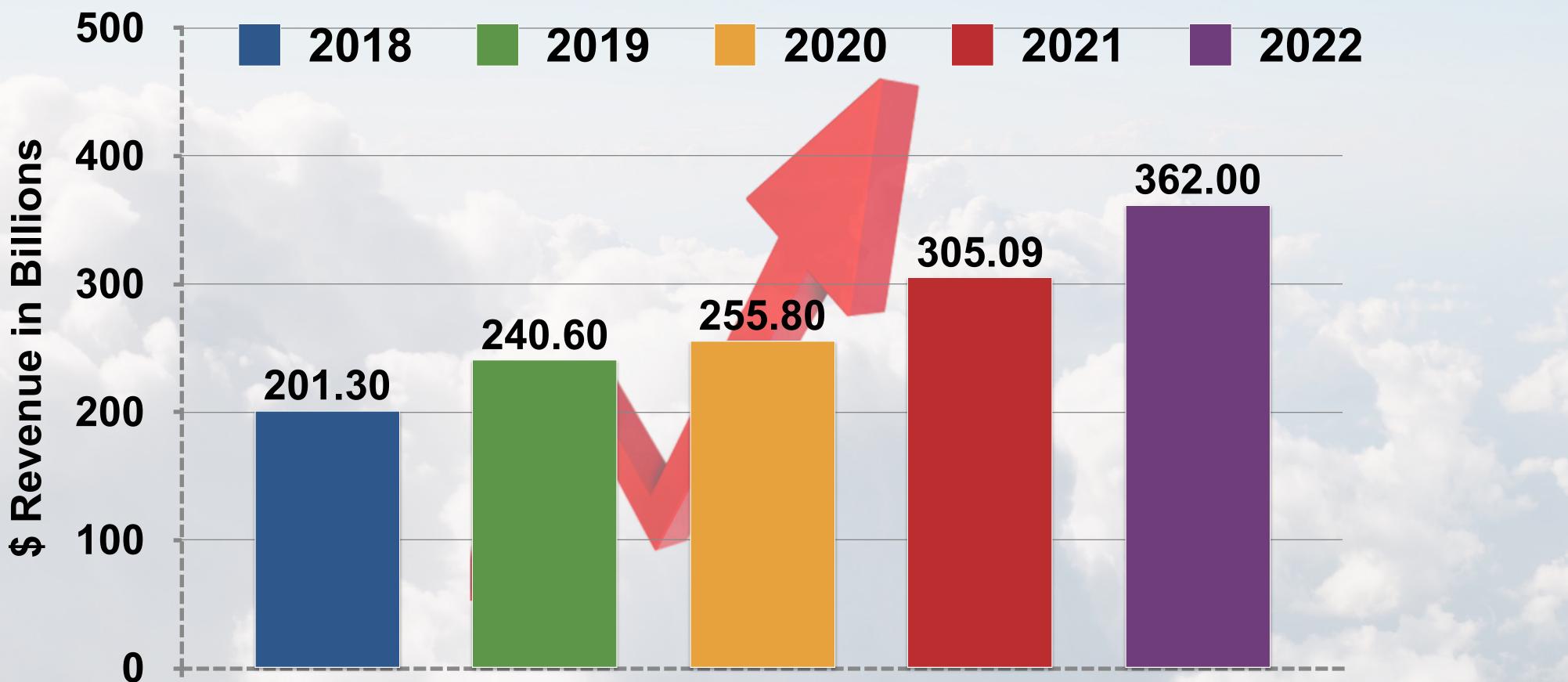




PUSH FOR MORE CLOUD ADOPTION



PUBLIC CLOUD REVENUE



Source: Gartner

Total Revenue

PUBLIC CLOUD REVENUE

What is the problem?

Source: Gartner

0

WE JUST GOT OUR CLOUD BILLS THIS MONTH

I don't have the money to pay this time! I should ask Dr Kandemir's Pcard!

I forgot to turn off my VMs! Dr Kesidis will be furious!

NOT ONLY GRAD STUDENTS

chose the wrong tier! Wasted Dr. Bhuvan's grant money!

> exceeded my free quota! Will **Dr Das** help me?

WE JUST GOT OUR CLOUD BILLS THIS MONTH

I don't have the money to pay this time! I should ask **Dr Kandemir's** Pcard!

Why is cost important?

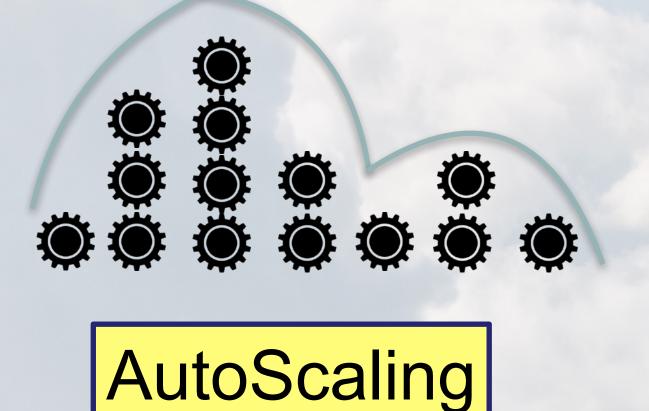
BUT ALSO CLOUD CLIENTS

I chose the wrong tier! Wasted **Dr**. **Bhuvan's** grant money!

TENANT-SIDE PROBLEMS

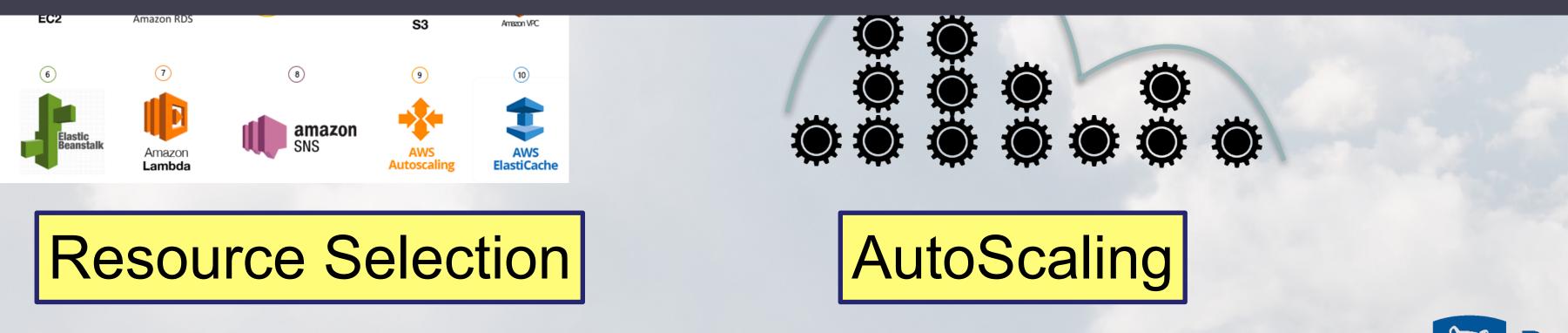
~35%

Resource Selection



~35%

Sa

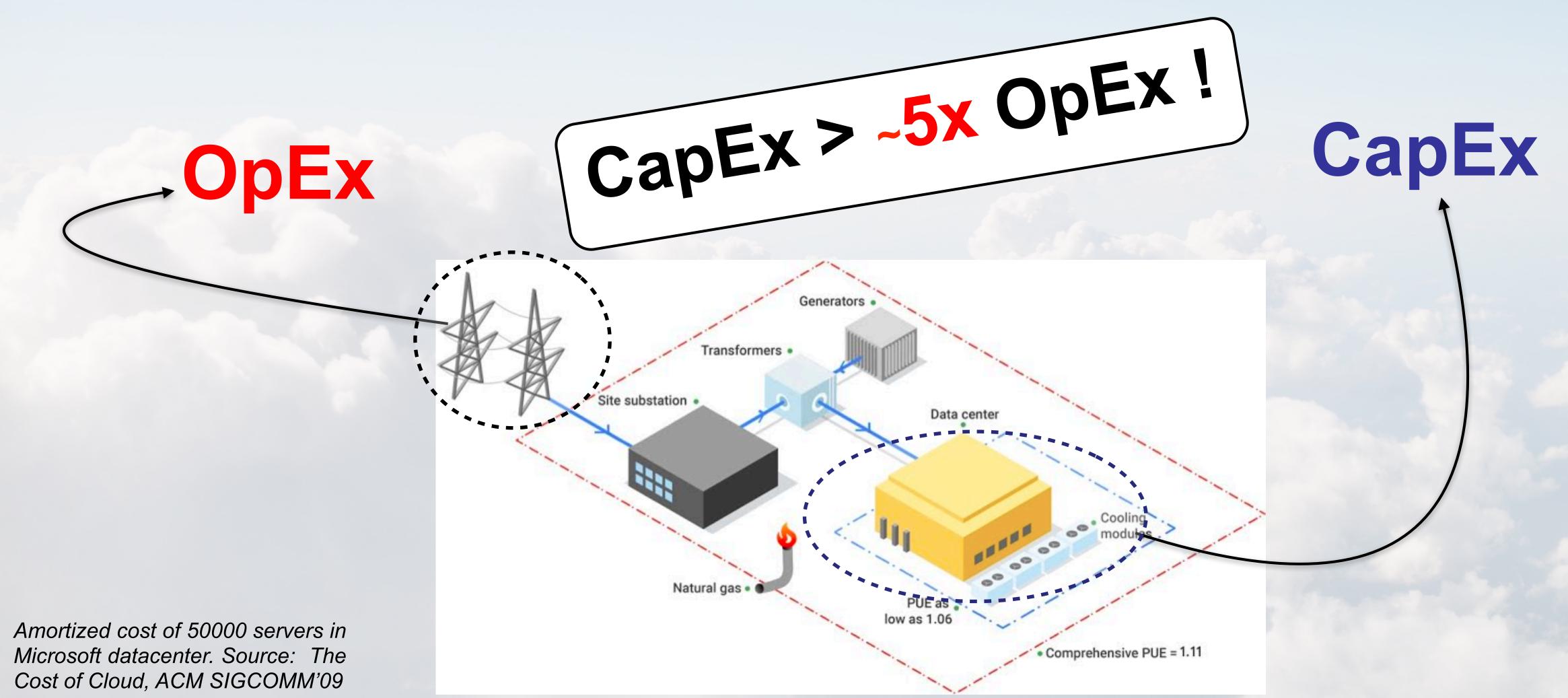


TENANT-SIDE PROBLEMS

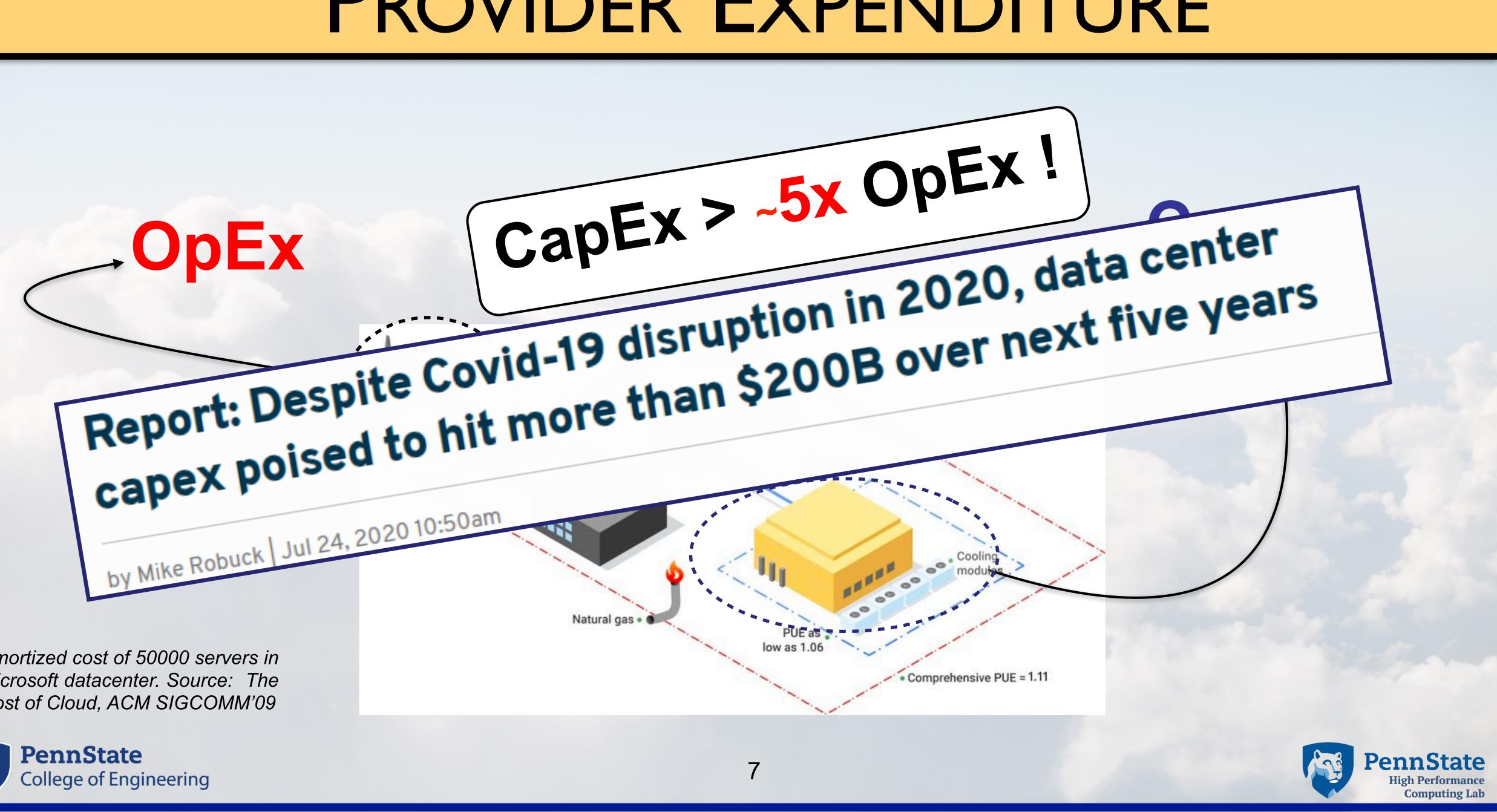
~77%

What about providers?

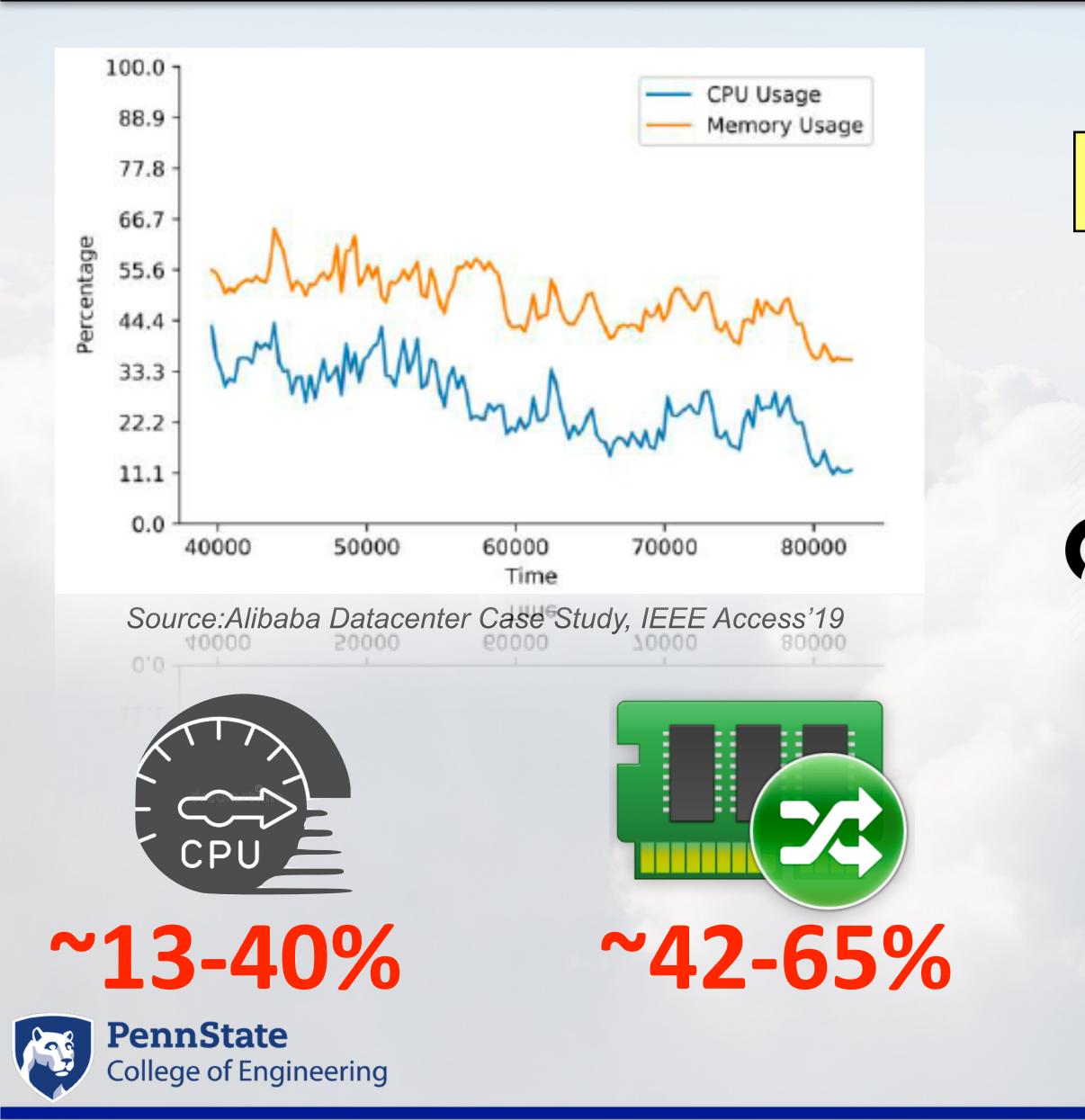
PROVIDER EXPENDITURE



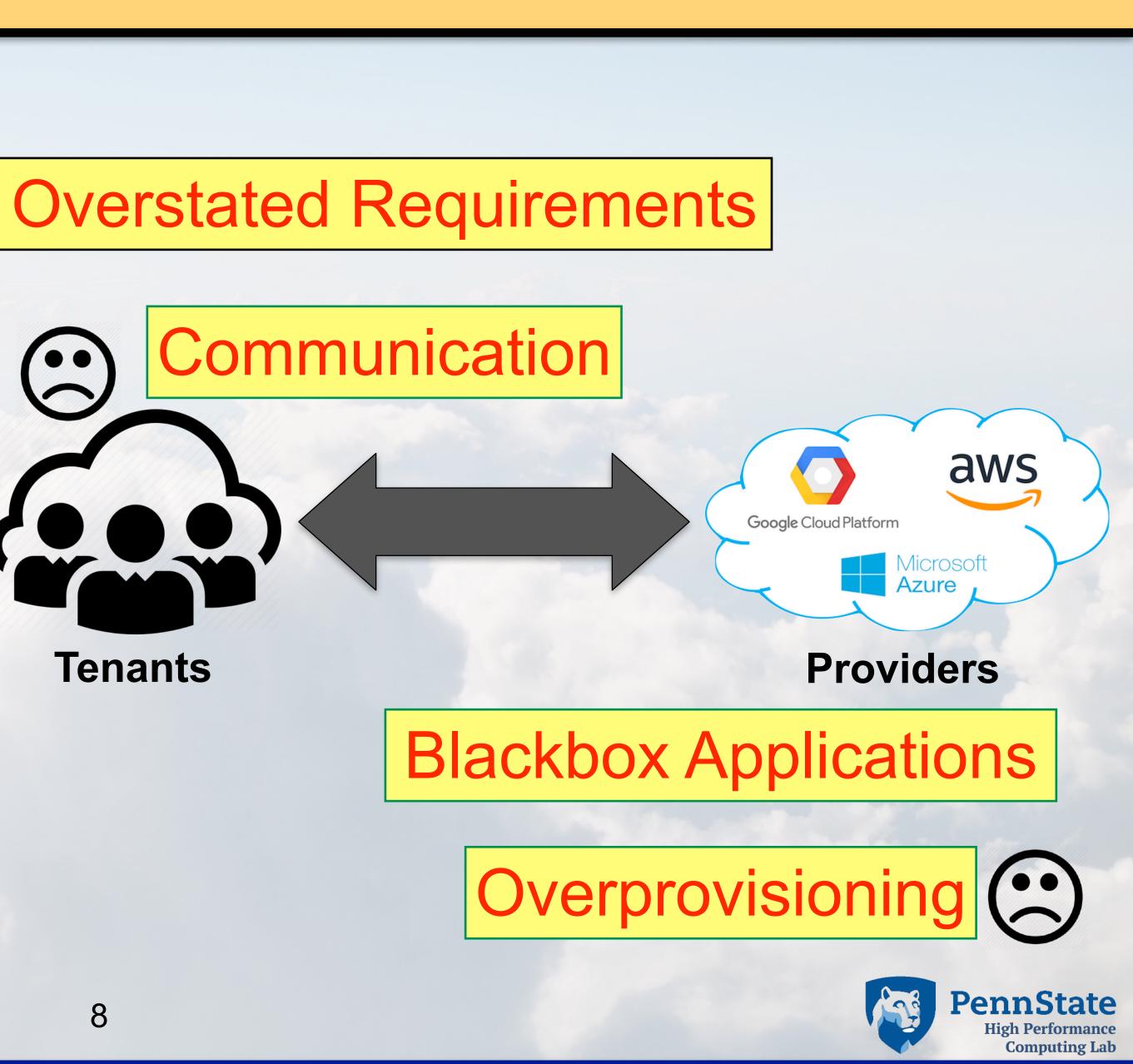
PROVIDER EXPENDITURE



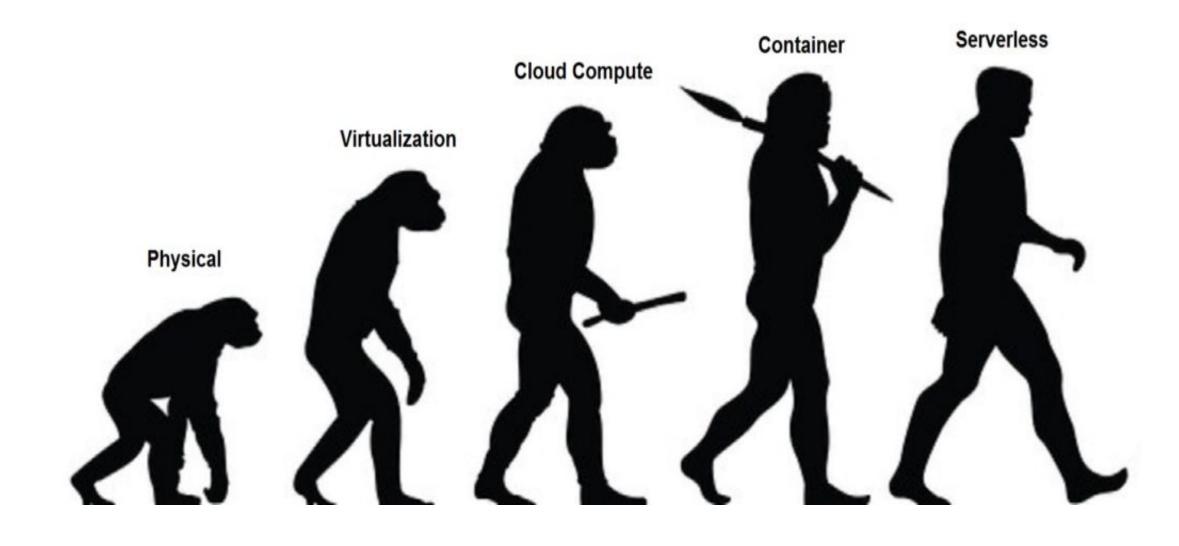
Amortized cost of 50000 servers in Microsoft datacenter. Source: The Cost of Cloud, ACM SIGCOMM'09



PROVIDER SIDE PROBLEMS



Serverless Computing

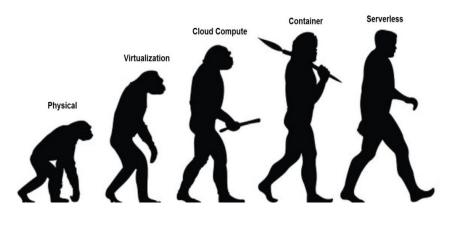


"...Distributed Event-based programming Service..." - OpenWhisk

"Run code without thinking about servers.Pay for only the compute time you consume" - AWS Lambda

"...logic can be spun up on-demand in response to events originating from anywhere...." - Google Cloud Functions

Serverless Computing



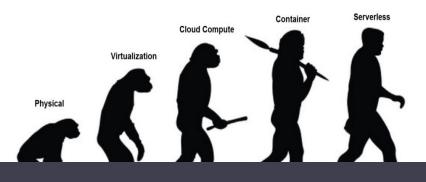
"...Distributed Event-based programming Service..." - OpenWhisk

"Run code without thinking about servers.Pay for only the compute time you consume" - **AWS Lambda**

"...logic can be spun up on-demand in response to events originating from anywhere...." - Google Cloud Functions

SERVERLESS COMPUTING

The Washington Post

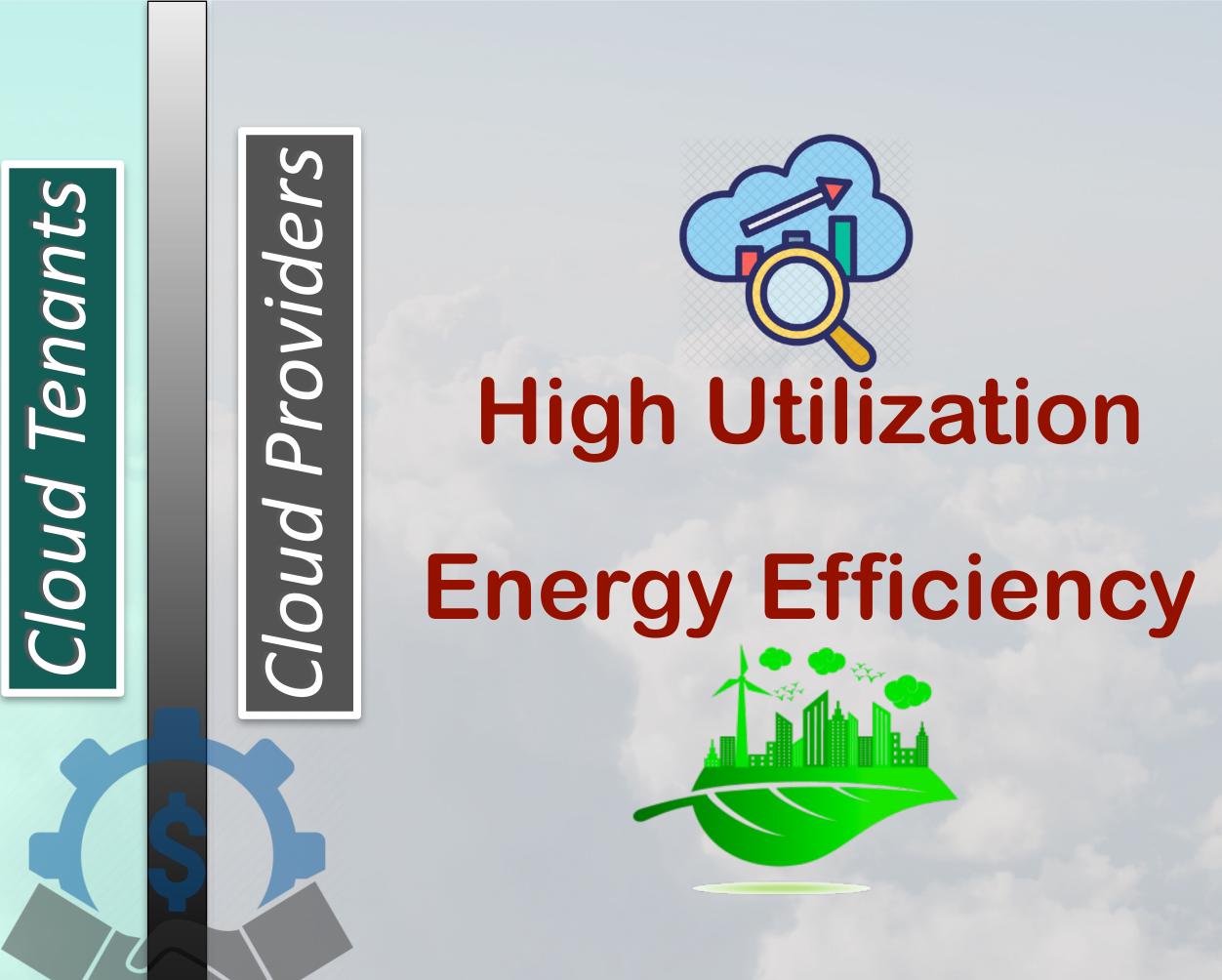


Hard to estimate demand Guaranteeing Performance

High Performance

PennState **College of Engineering**

WHAT WE NEED ?



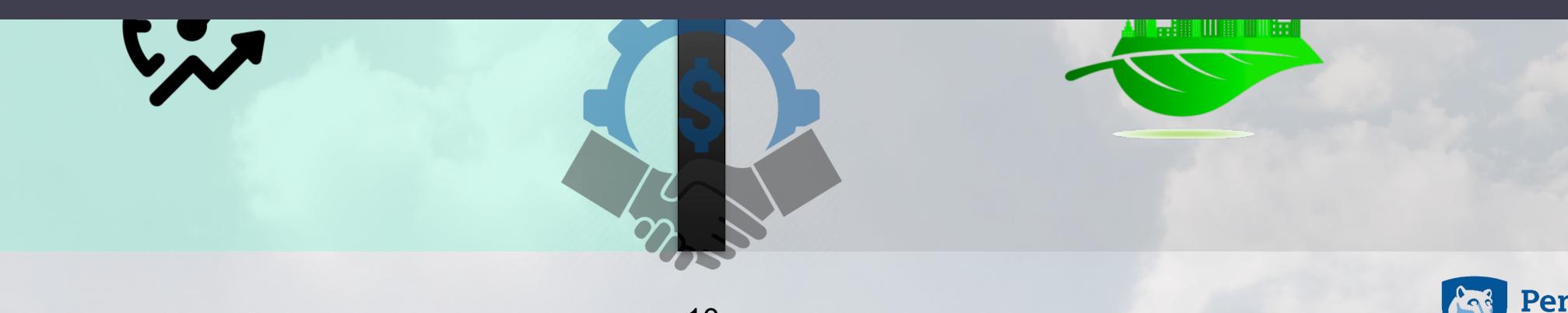
ce

Seda, SOSP'01 Mapreduce, OSDI'08 Hadoop (Yahoo), MSST'10 Spark, ACM Comm'16 Clipper, *NSDI'17*

WHAT WE NEED ?

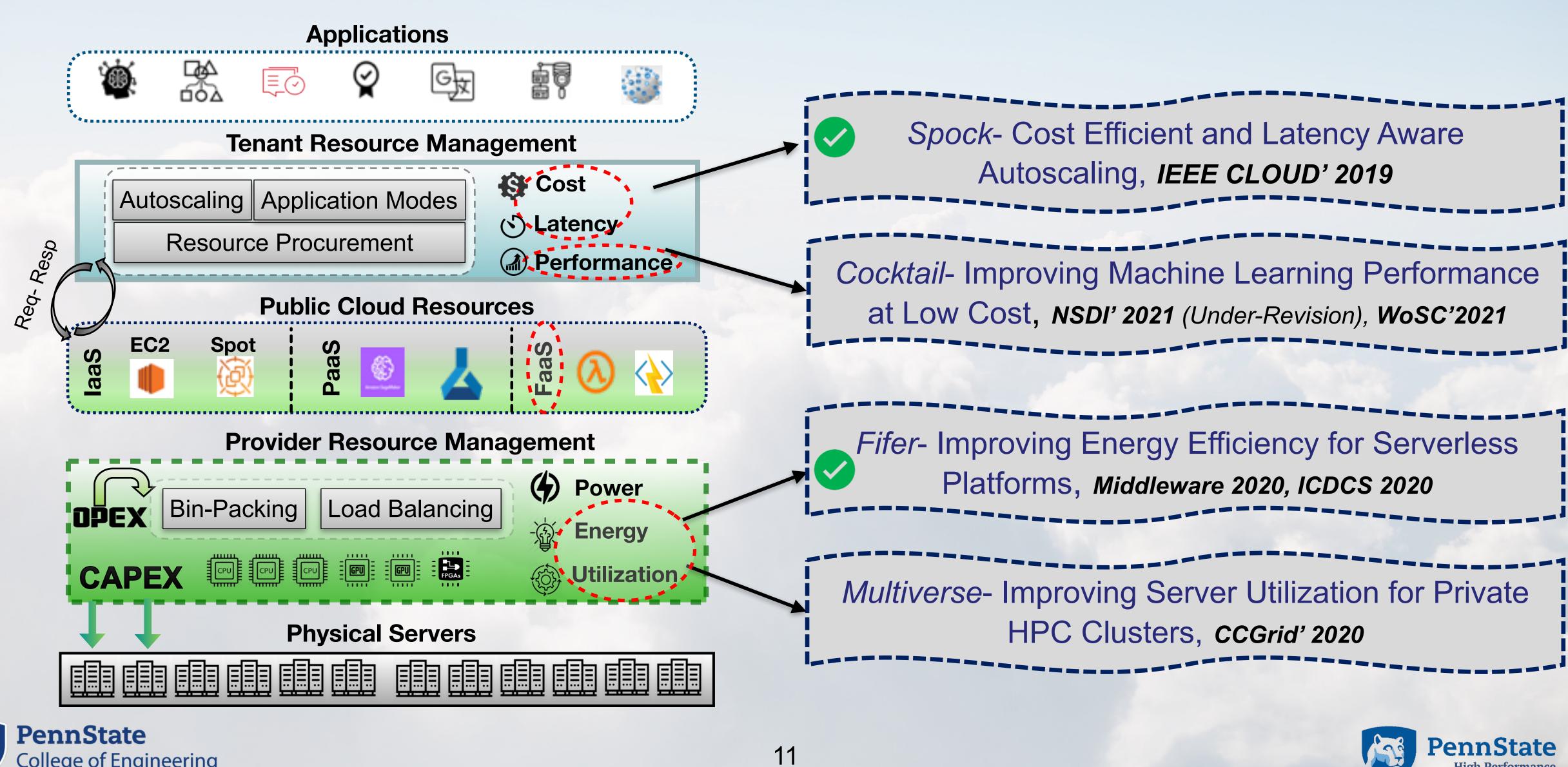


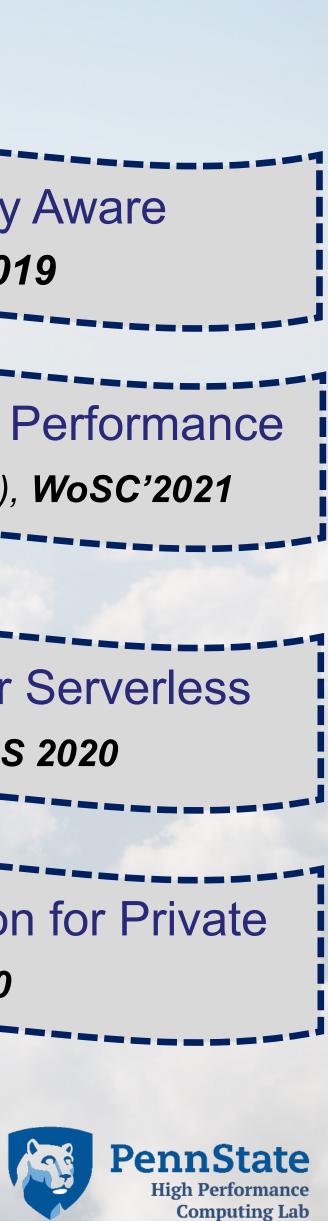
How to solve?



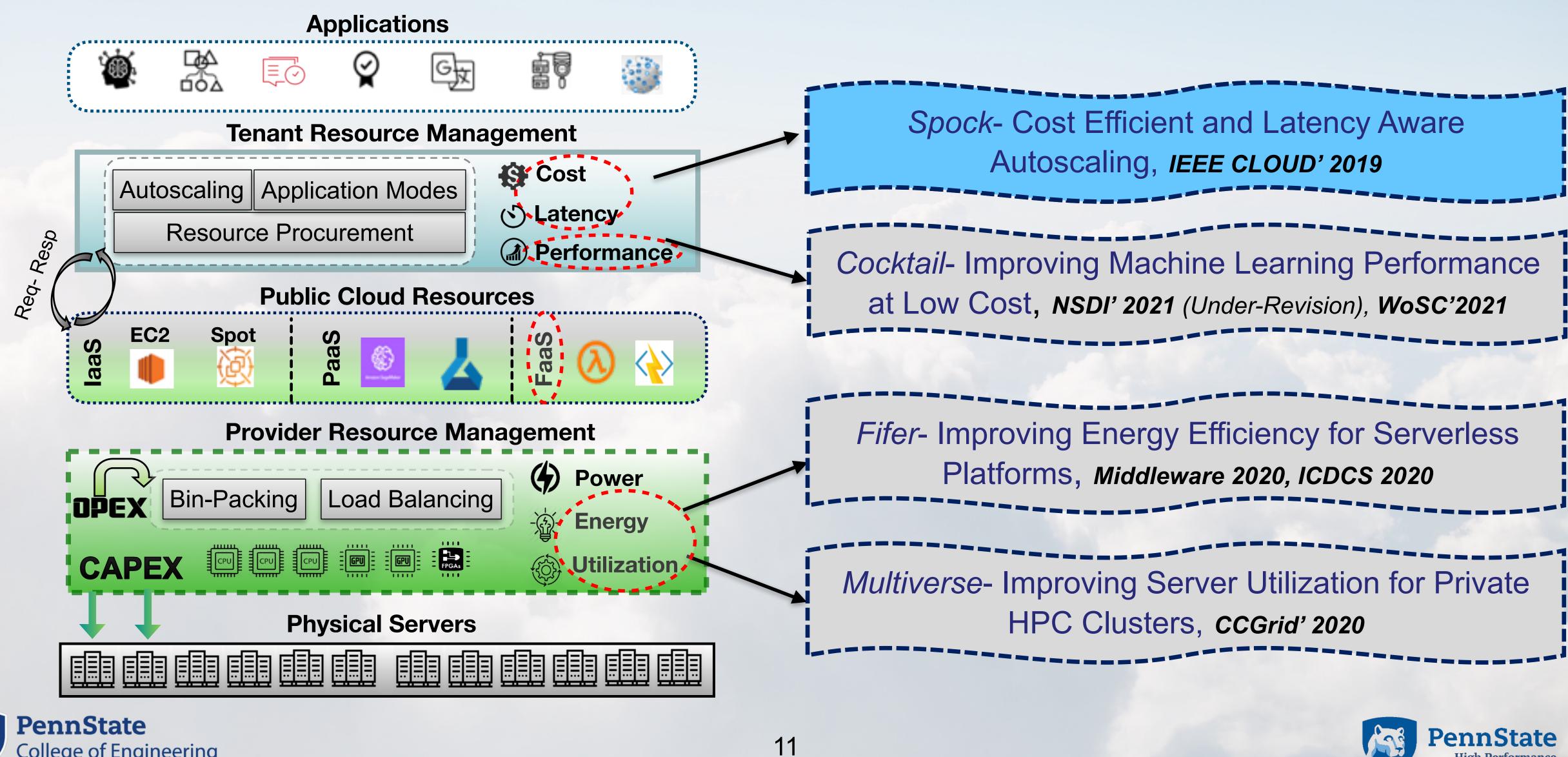
WHAT WE NEED ?

DISSERTATION CONTRIBUTIONS

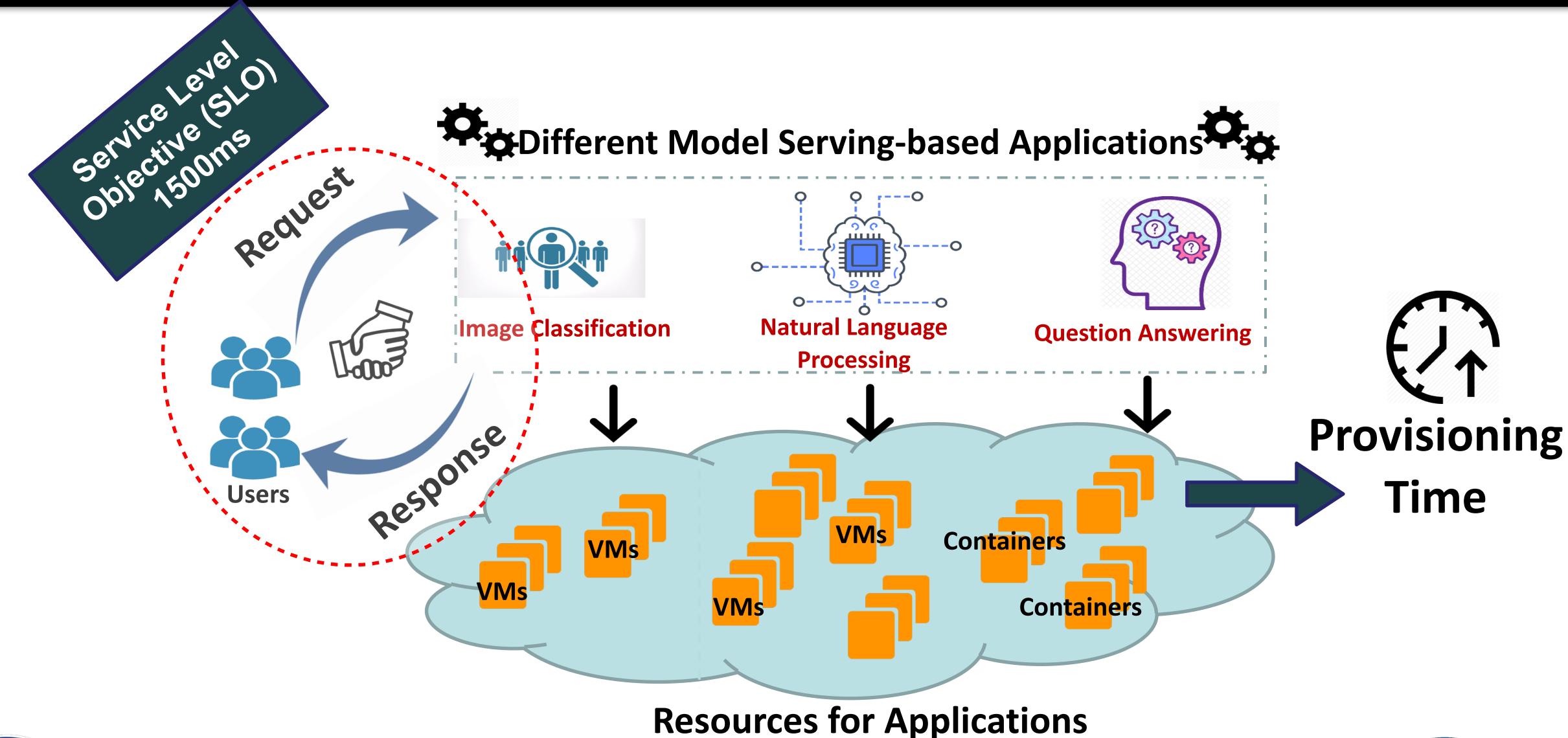




DISSERTATION CONTRIBUTIONS

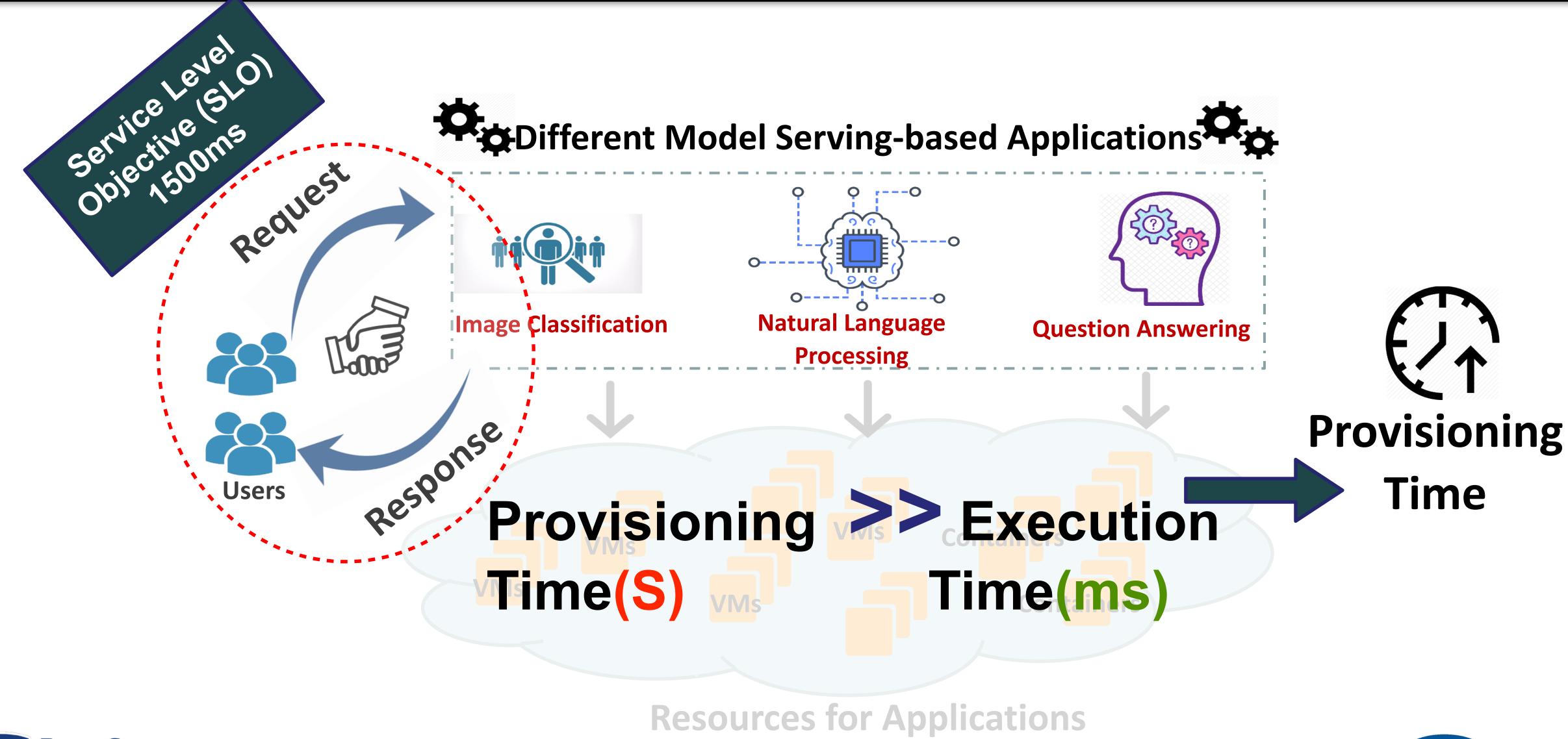


Model Serving Hosted on Cloud



12

MODEL SERVING HOSTED ON CLOUD

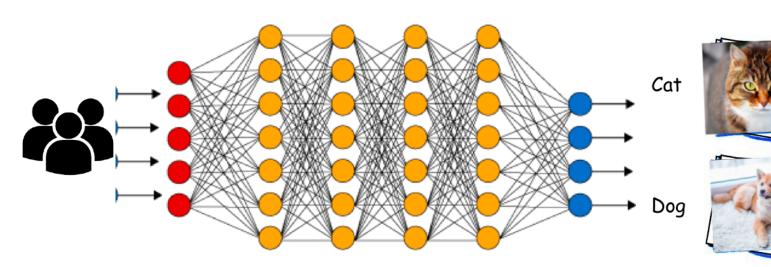


- Utilization based autoscaling- Urgaonkar et al PODC'03 Not suitable for millisecond scale applications
- Relaxed VM scale down Gandhi et al SC'12, TOCS'12 Intermittent over-provisioning
- Exploiting different VM instance types Wang et al. Eurosys'17, They are complementary to our proposal.

• Utilization based autoscaling- Urgaonkar et al PODC'03 Not suitable for millisecond scale applications

Only VM based solutions are largely expensive • Exploiting different VIVI instance types Wang et al. Eurosys'17, → They are complementary to our proposal.

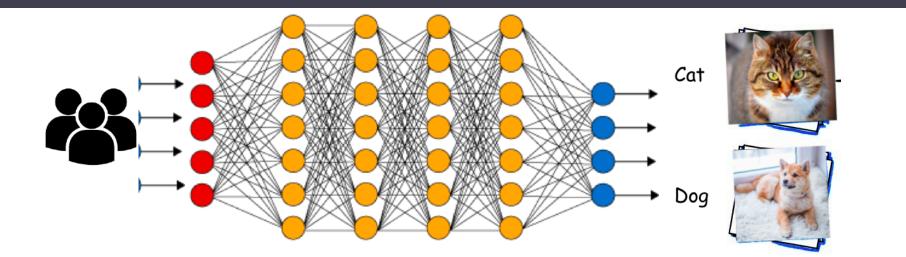
Deep Learning Inferences



KEY FINDINGS

Arrival	Resource	Cost	SLO
Bursty		Pay per 🙂	Pre warmed
	VMs	Over 😕 provisioned	Too much 😕 Scaling
Predictable		Per-unit Cost	Pre warmed
	VMs	Known Demand	Reduced Scaling

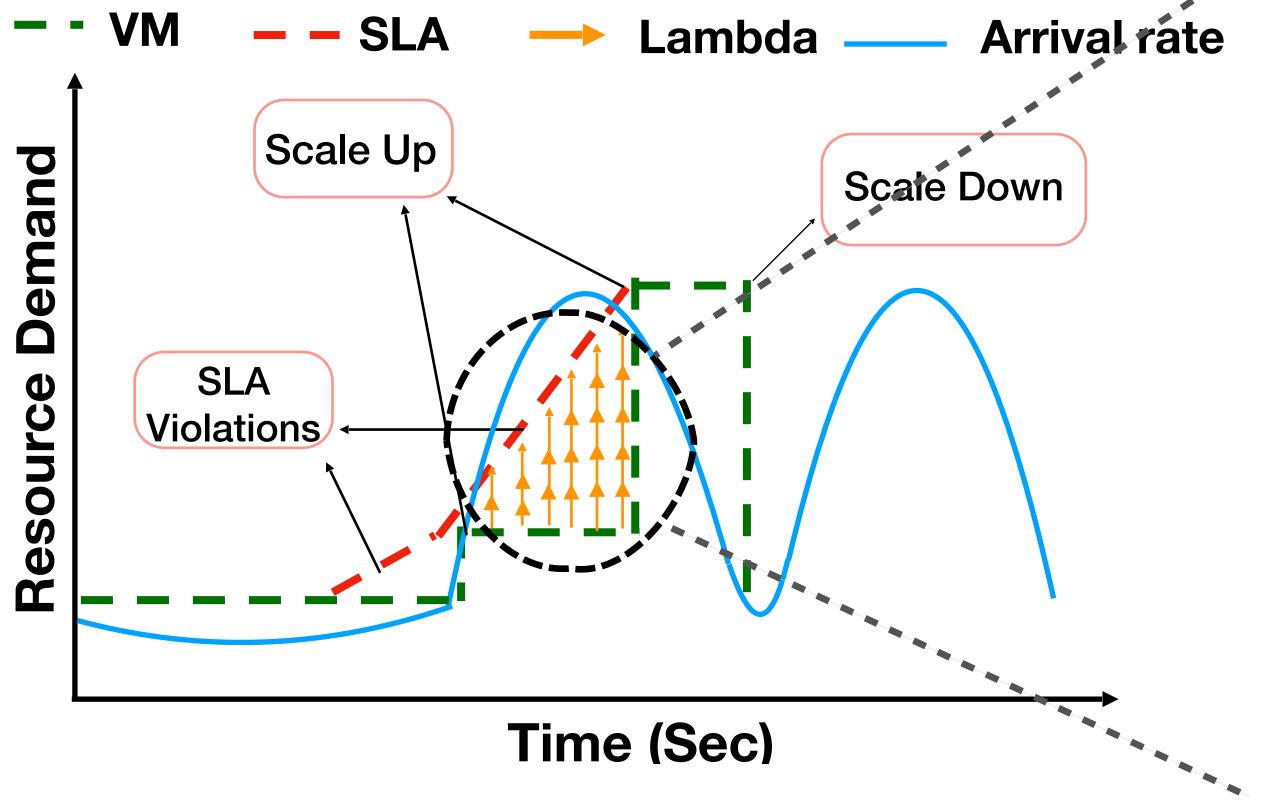
Can we multiplex both?



KEY FINDINGS

	Cost	warmed
VMs	Known Demand	Reduced Control Scaling

SPOCK: EXPLOITING SERVERLESS FUNCTIONS FOR SLO AND COST AWARE AUTOSCALING



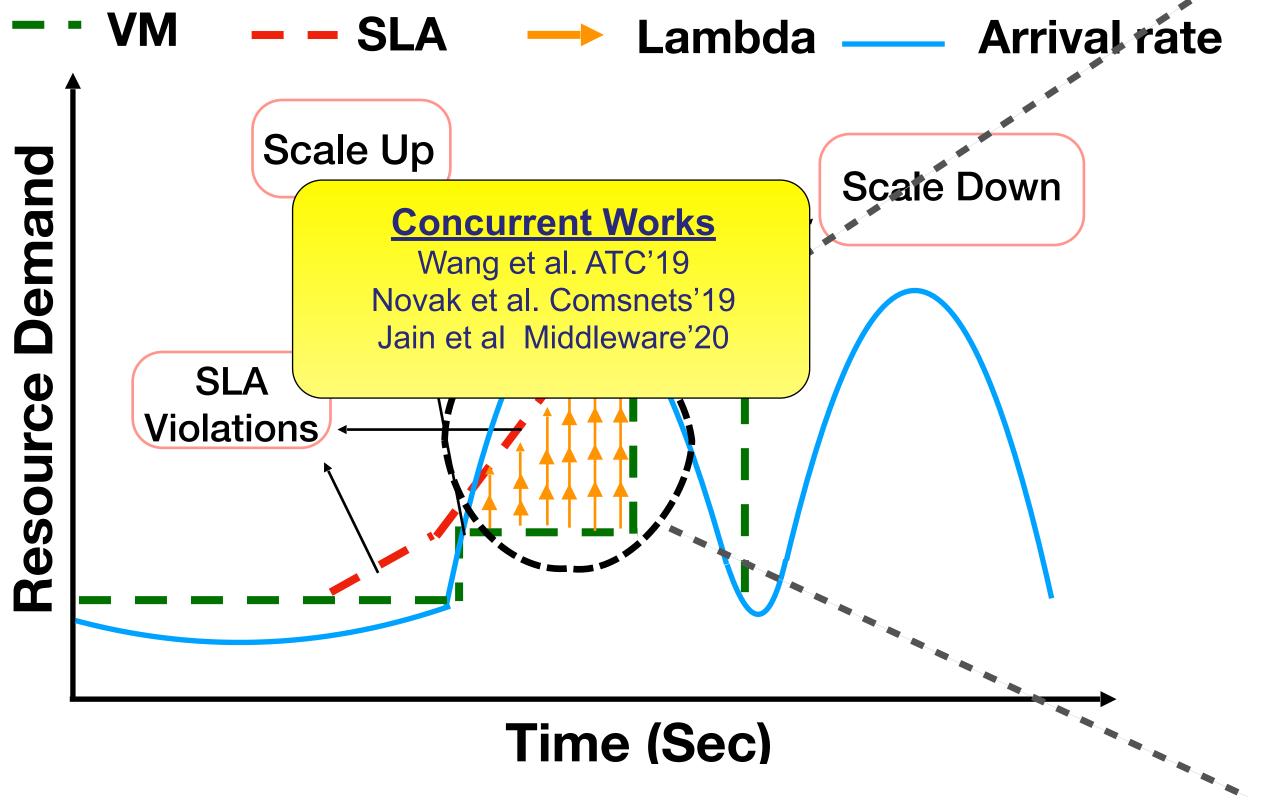
> Offload queries to lambdas while starting new VMs.

> Reduces SLO violations during request surge.

> Reduce intermittent overprovisioning VMs

High Performance **Computing Lab**

SPOCK: EXPLOITING SERVERLESS FUNCTIONS FOR SLO AND COST AWARE AUTOSCALING



Time (Sec)

> Offload queries to lambdas while starting new VMs.

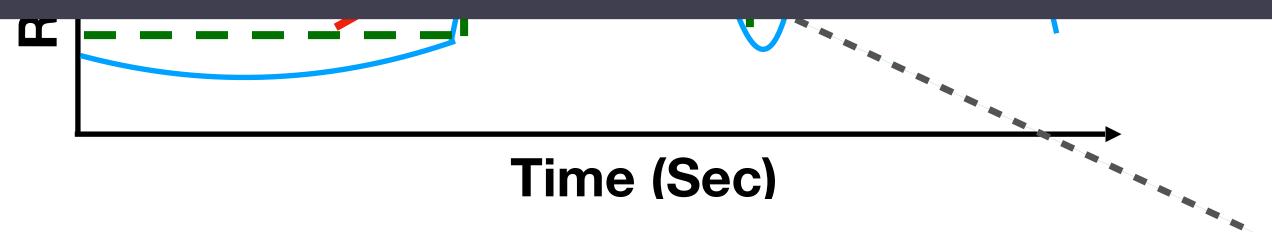
> Reduces SLO violations during request surge.

> Reduce intermittent overprovisioning VMs

High Performance **Computing Lab**

SPOCK: EXPLOITING SERVERLESS FUNCTIONS FOR SLO AND COST AWARE AUTOSCALING

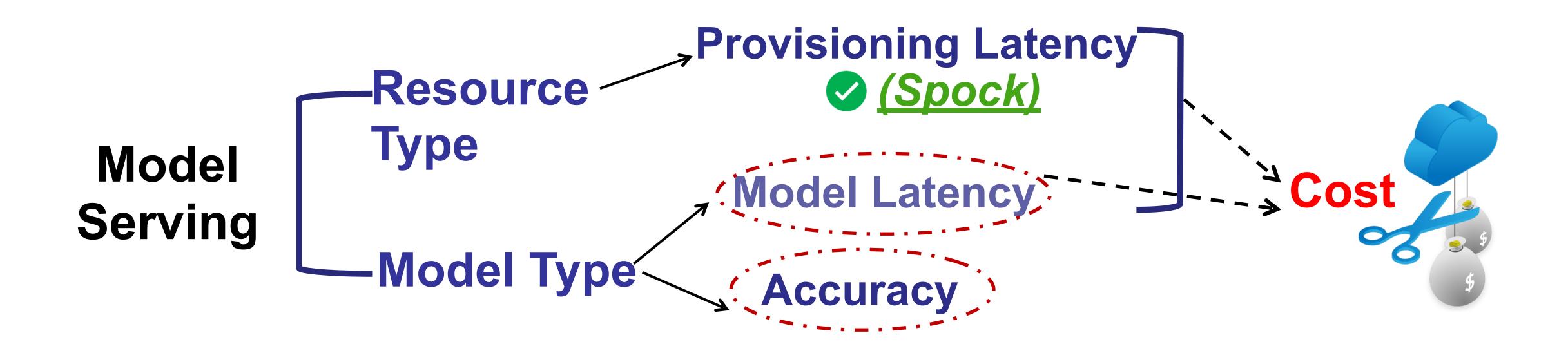
Spock reduces SLO violations by ~74% with ~33% cost savings



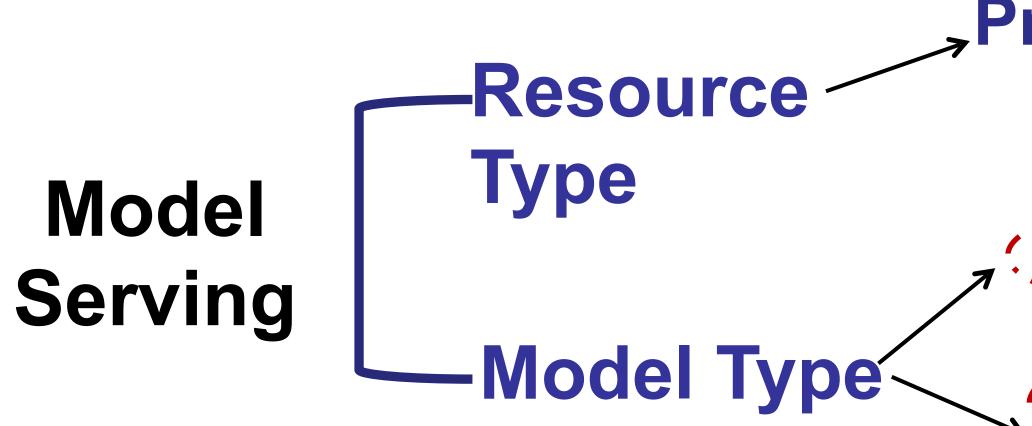
> Offload queries to lambdas while starting new VMs.

> Reduce intermittent overprovisioning VMs

Model Serving Challenges



MODEL SERVING CHALLENGES

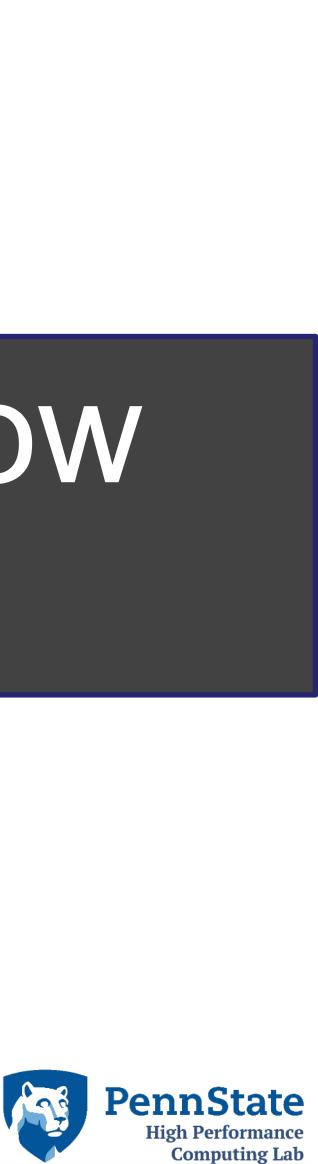


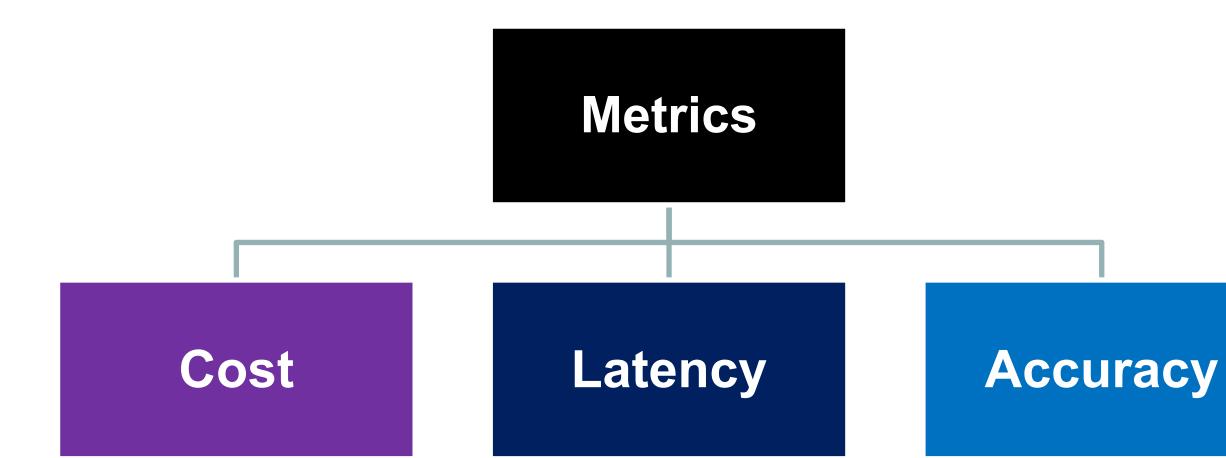
Provisioning Latency (Spock) **Model Latency** In Netflix, 75% of viewer activity is based Accuracy on these accurate suggestions.

MODEL SERVING CHALLENGES

Posourco How to improve accuracy with low latency and low cost?

Provisioning Latency 2 (Cnoold)



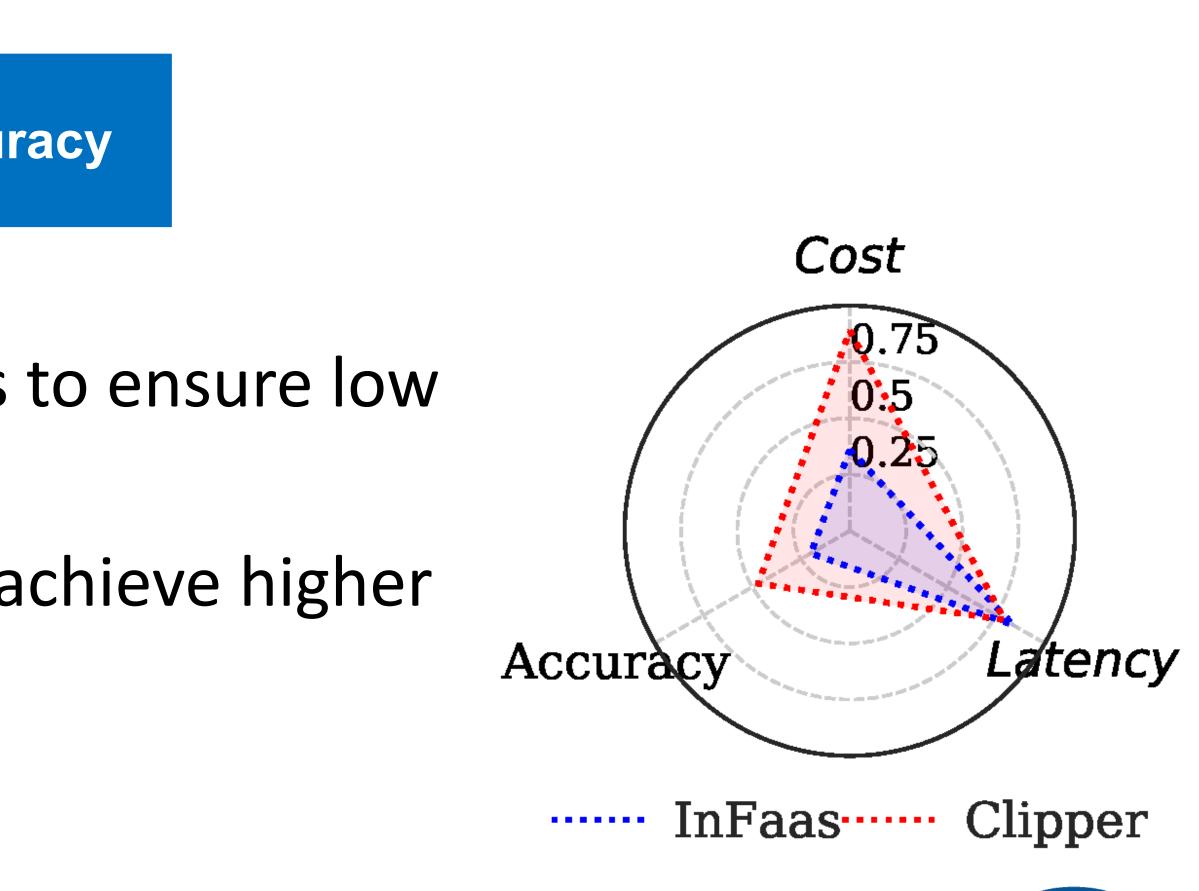


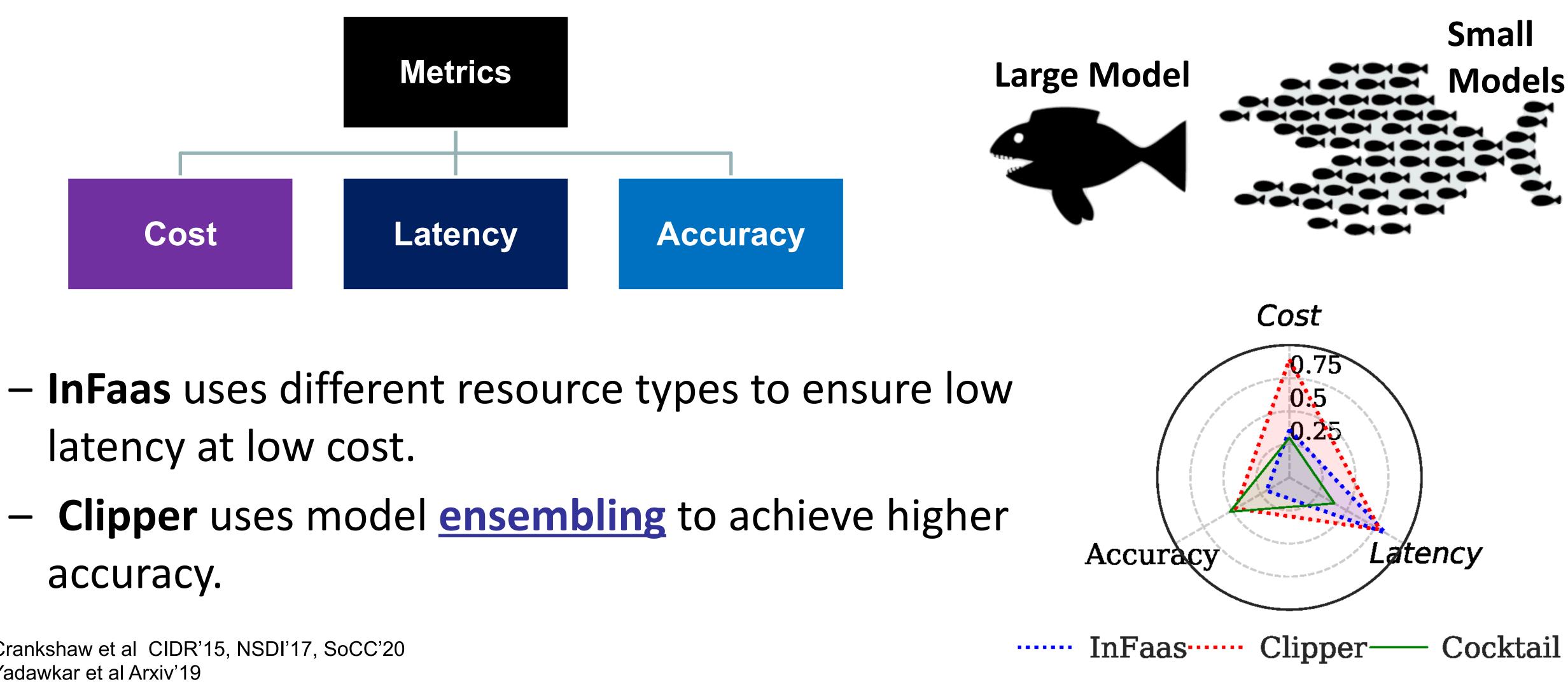
- InFaas uses different resource types to ensure low latency at low cost.

 Clipper uses model ensembling to achieve higher accuracy.

Crankshaw et al CIDR'15, NSDI'17, SoCC'20 Yadawkar et al Arxiv'19

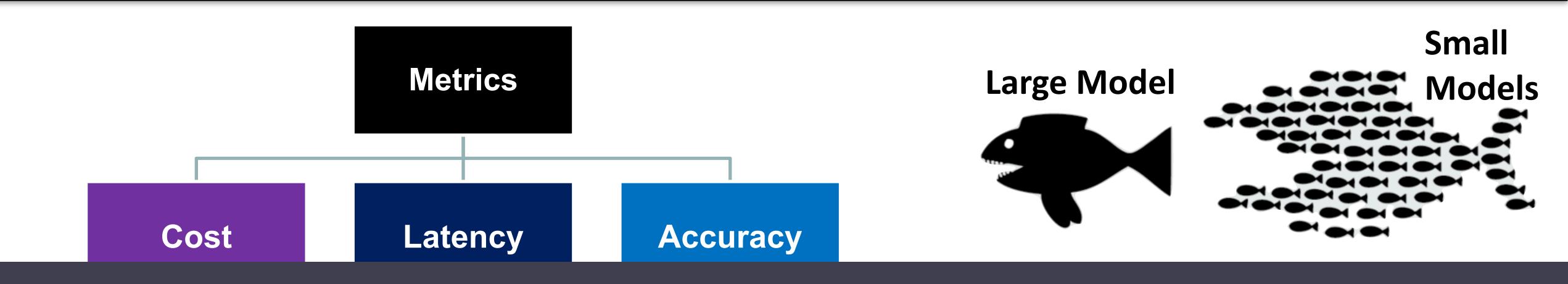
PRIOR WORK IN MODEL SERVING





Crankshaw et al CIDR'15, NSDI'17, SoCC'20 Yadawkar et al Arxiv'19

PRIOR WORK IN MODEL SERVING

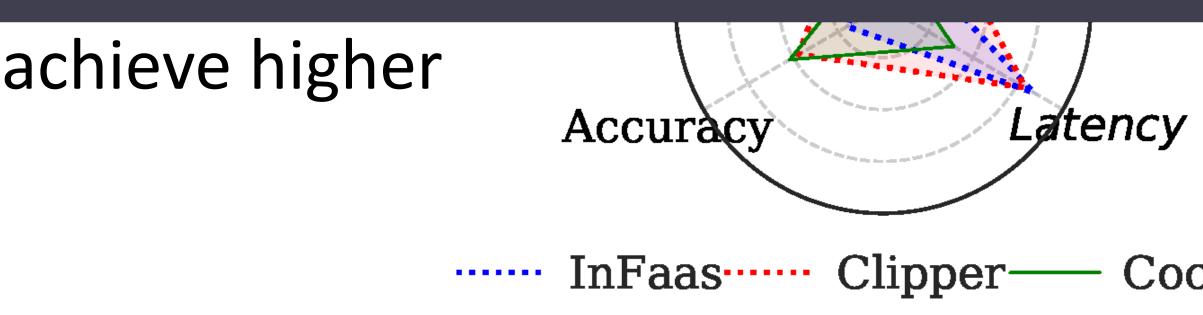


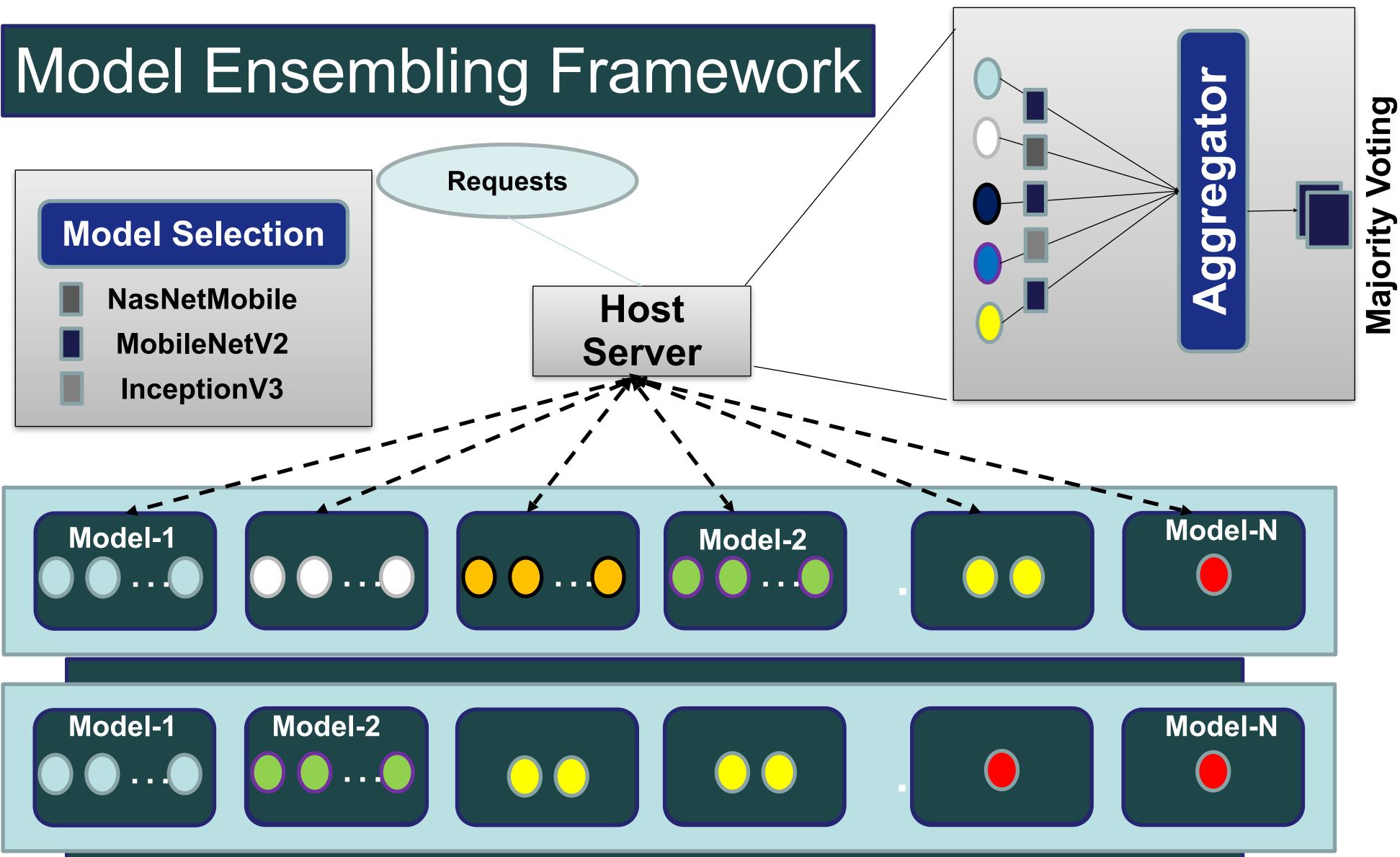
How to do ensembling?

Clipper uses model ensembling to achieve higher accuracy.

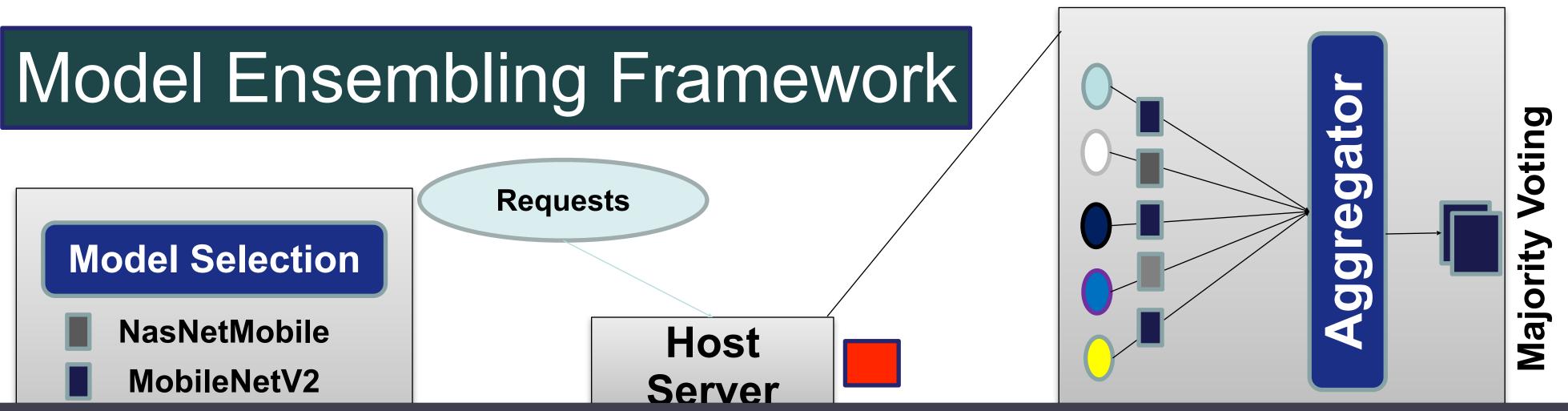
Crankshaw et al CIDR'15, NSDI'17, SoCC'20 Yadawkar et al Arxiv'19

PRIOR WORK IN MODEL SERVING

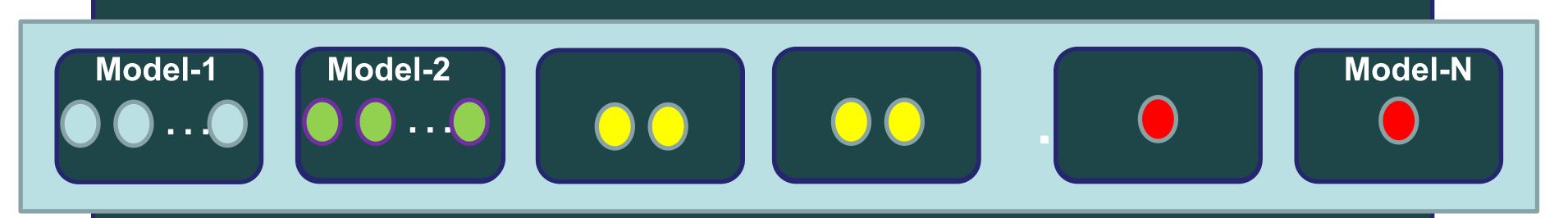




Cloud Resources for Individual Models (Virtual Machines)

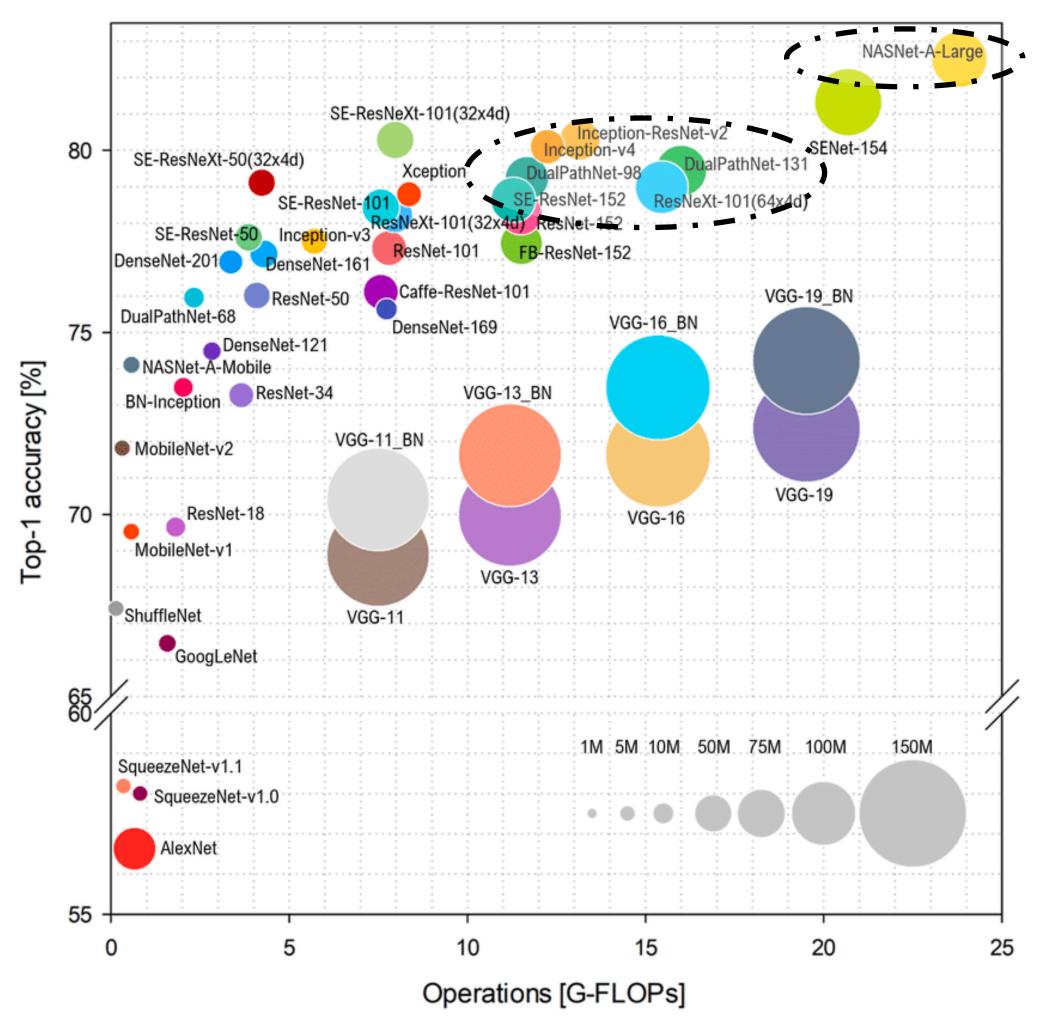


High Resource Footprint What about Model Selection?



Cloud Resources for Individual Models (Virtual Machines)

MODEL SPACE EXPLORATION

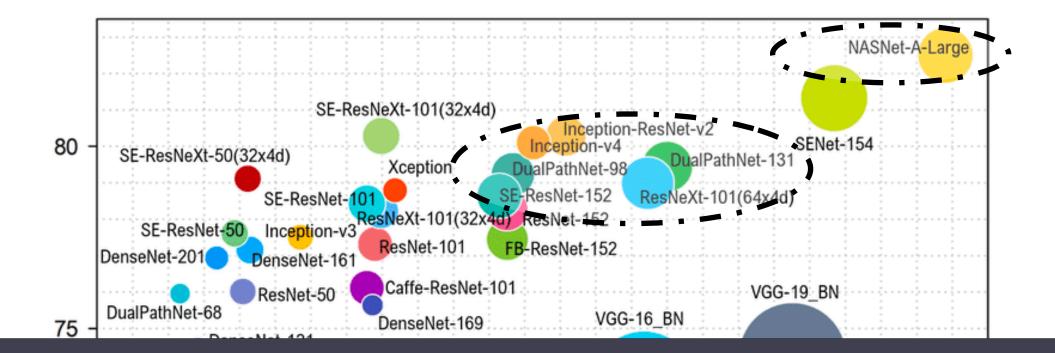


IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures

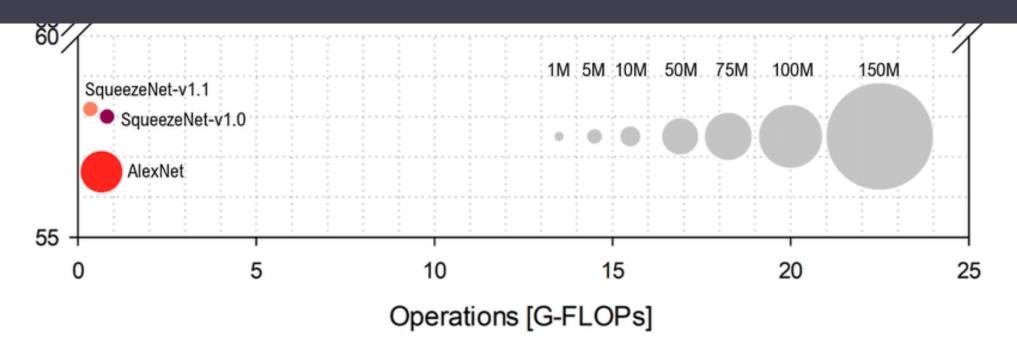
Most accurate model *~2x parameters, latency *~2% more accuracy

How to bridge the 2% accuracy gap?
What about cost?

MODEL SPACE EXPLORATION



How to ensemble?

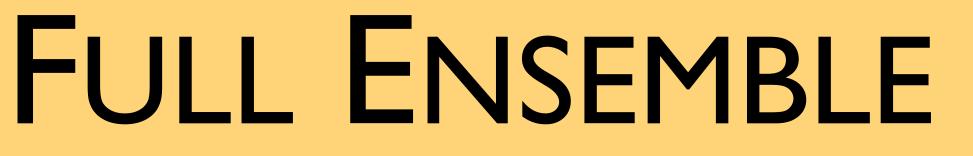


IEEE Access'18 Benchmark Analysis of Representative Deep Neural Network Architectures

Most accurate model *~2x parameters, latency *~2% more accuracy

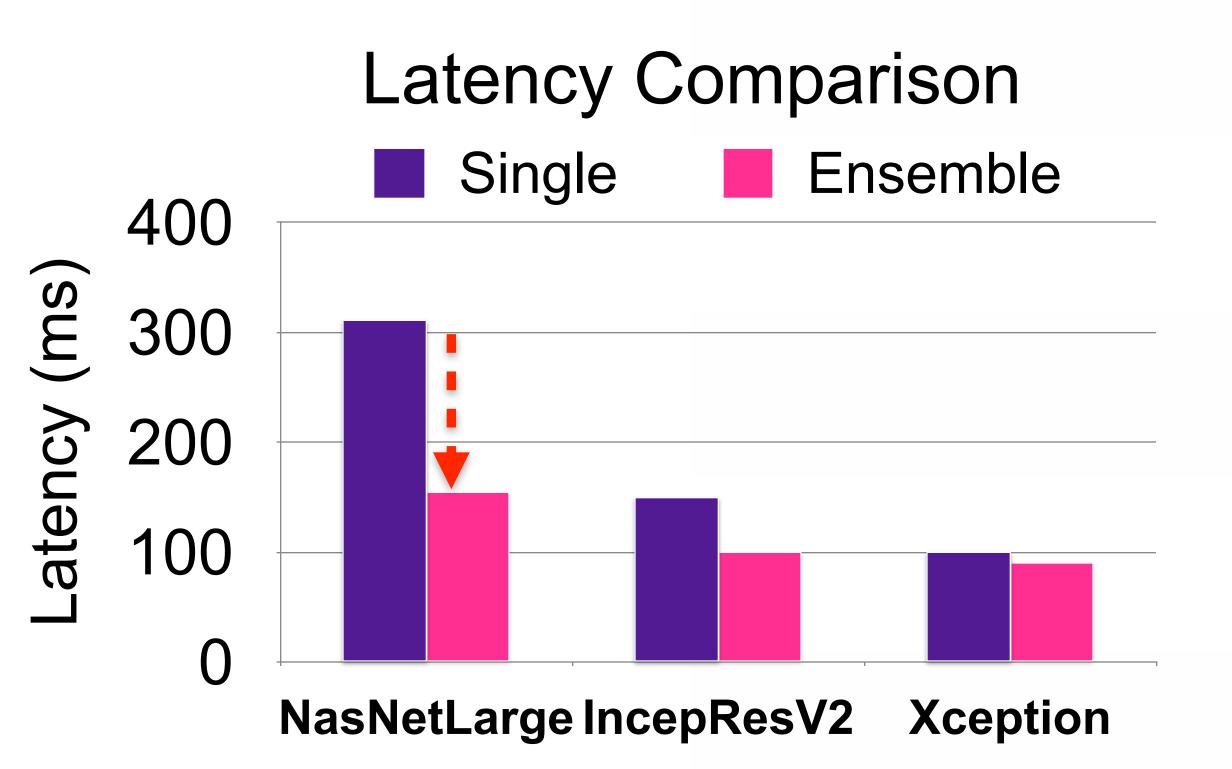
What about cost?

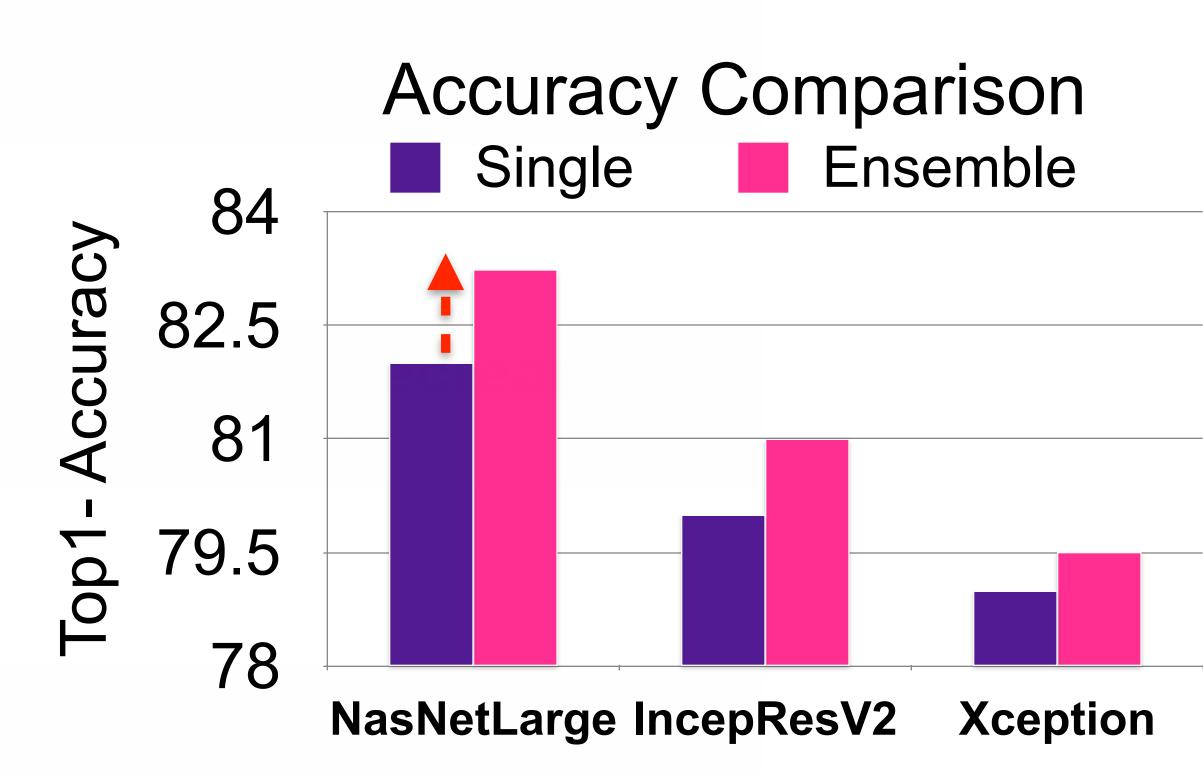
Combine all models which are under the latency of baseline model.



Model Set: Top 12 frequently used models from Keras Tensorflow

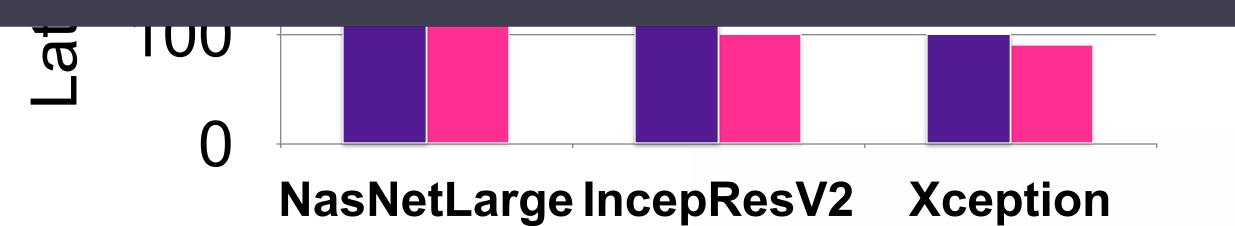
Choose baseline models in decreasing order of accuracy



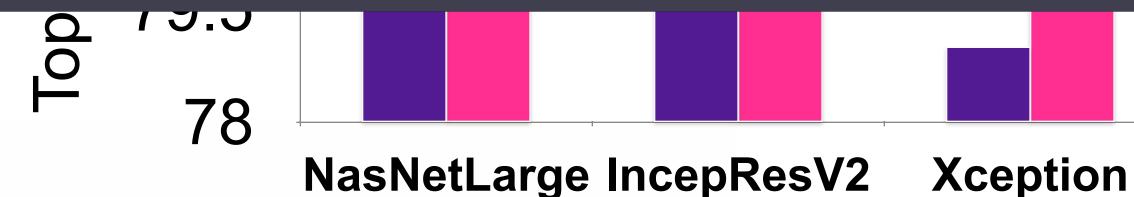


Latency Comparison Sinale Ensemble

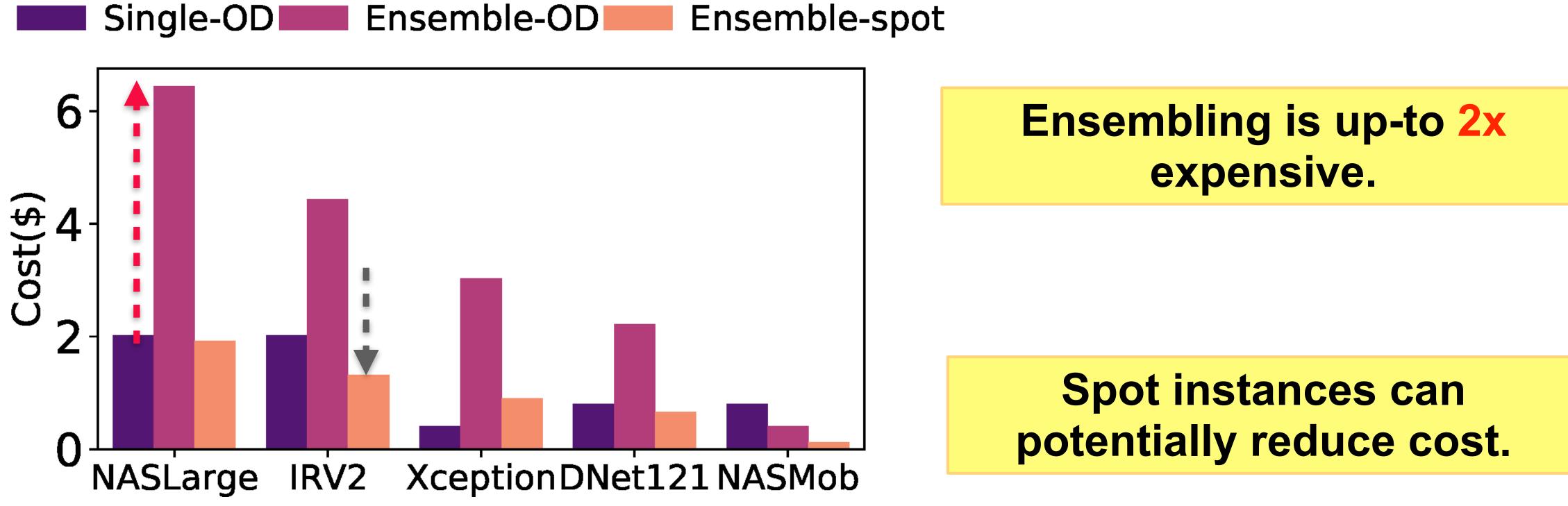
What about Cost?



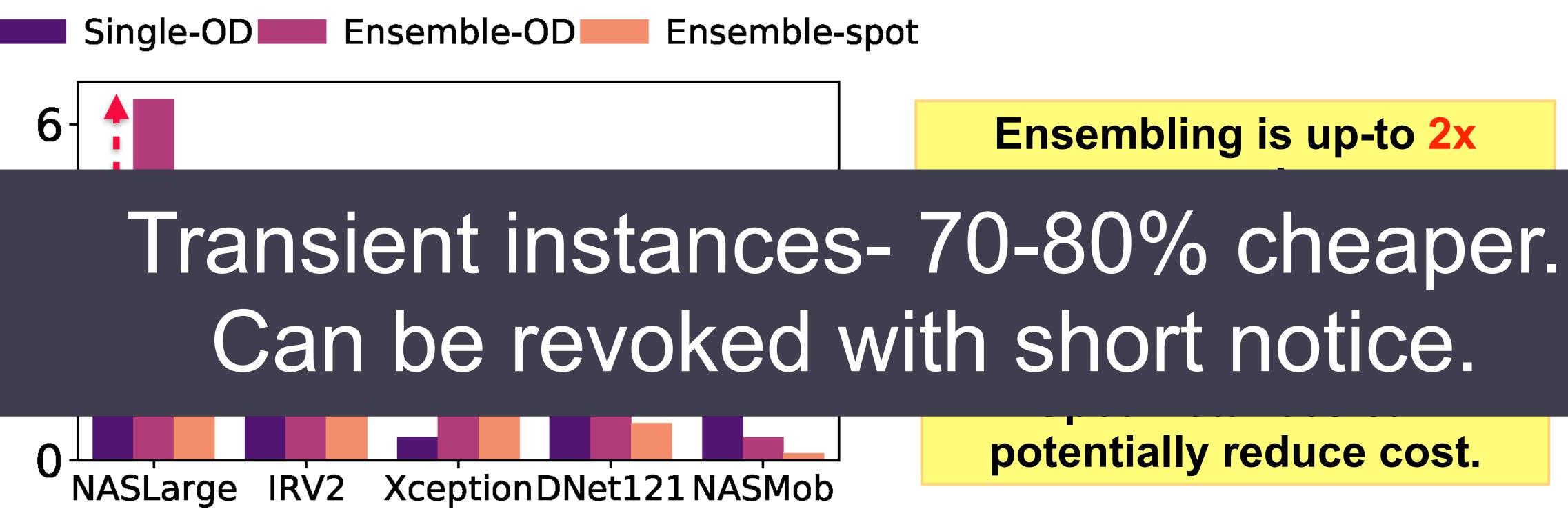
Accuracy Comparison Ensemble Single

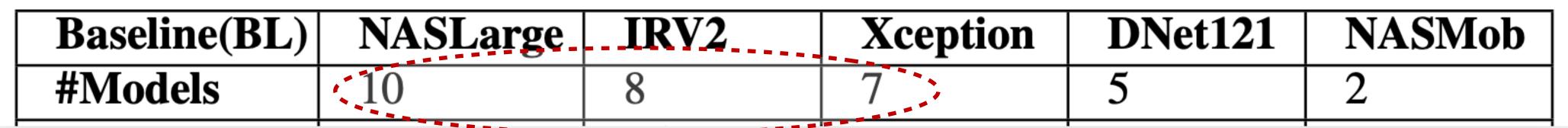


FULL ENSEMBLING COST



FULL ENSEMBLING COST



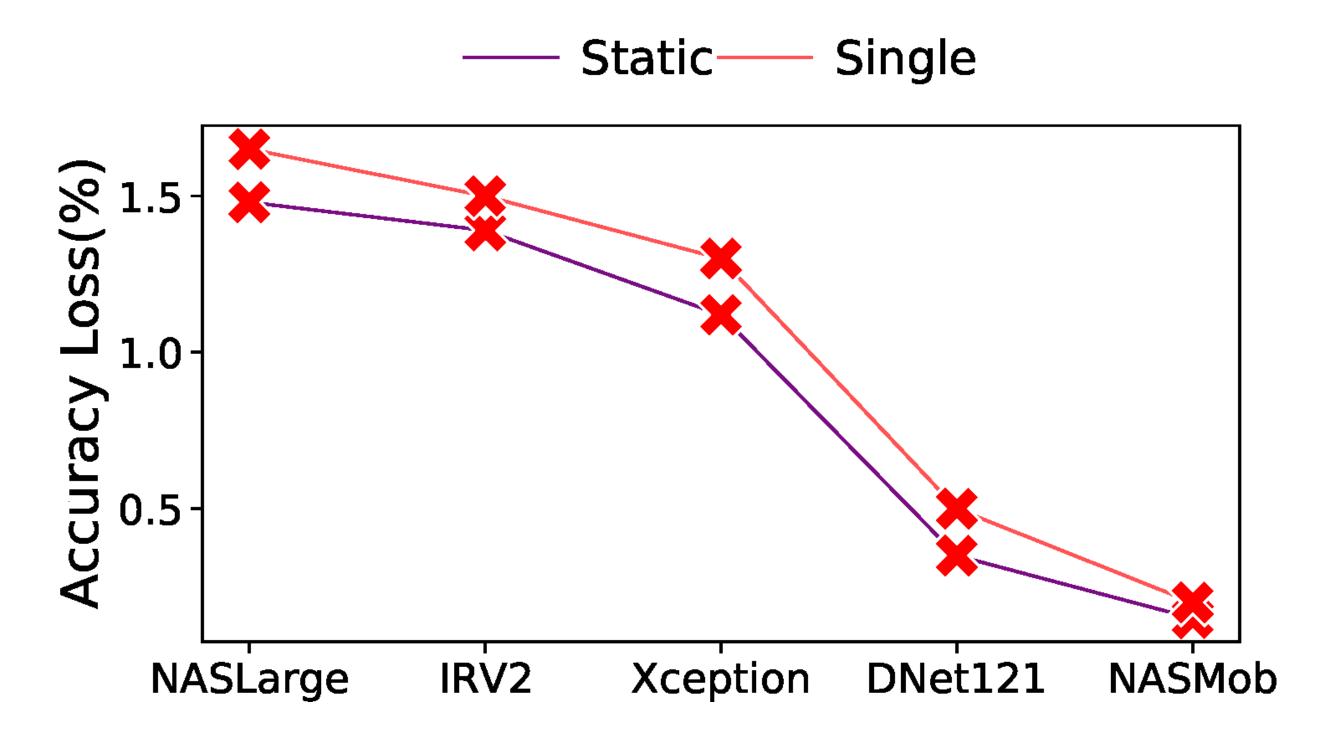


WHAT CAN WE DO?

Do we need so many models? How to autoscale resources for each

How to handle instance failures?

Compared to Full-Ensemble (N models)



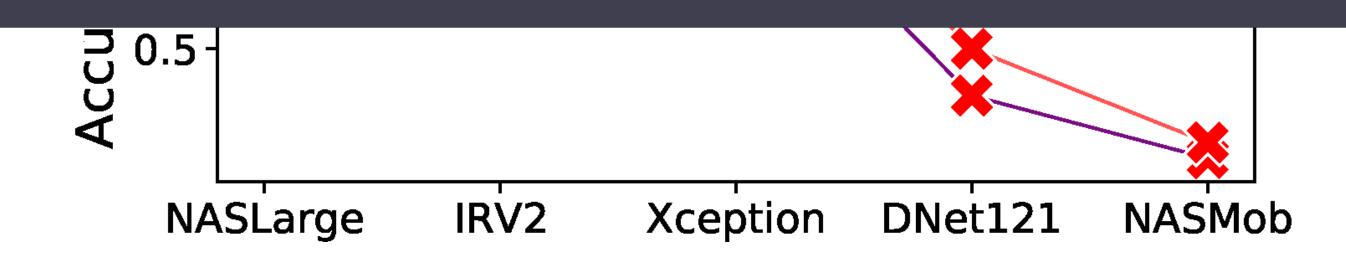
STATIC ENSEMBLING

Most accurate N/2 models

Compared to Full-Ensemble (N models)

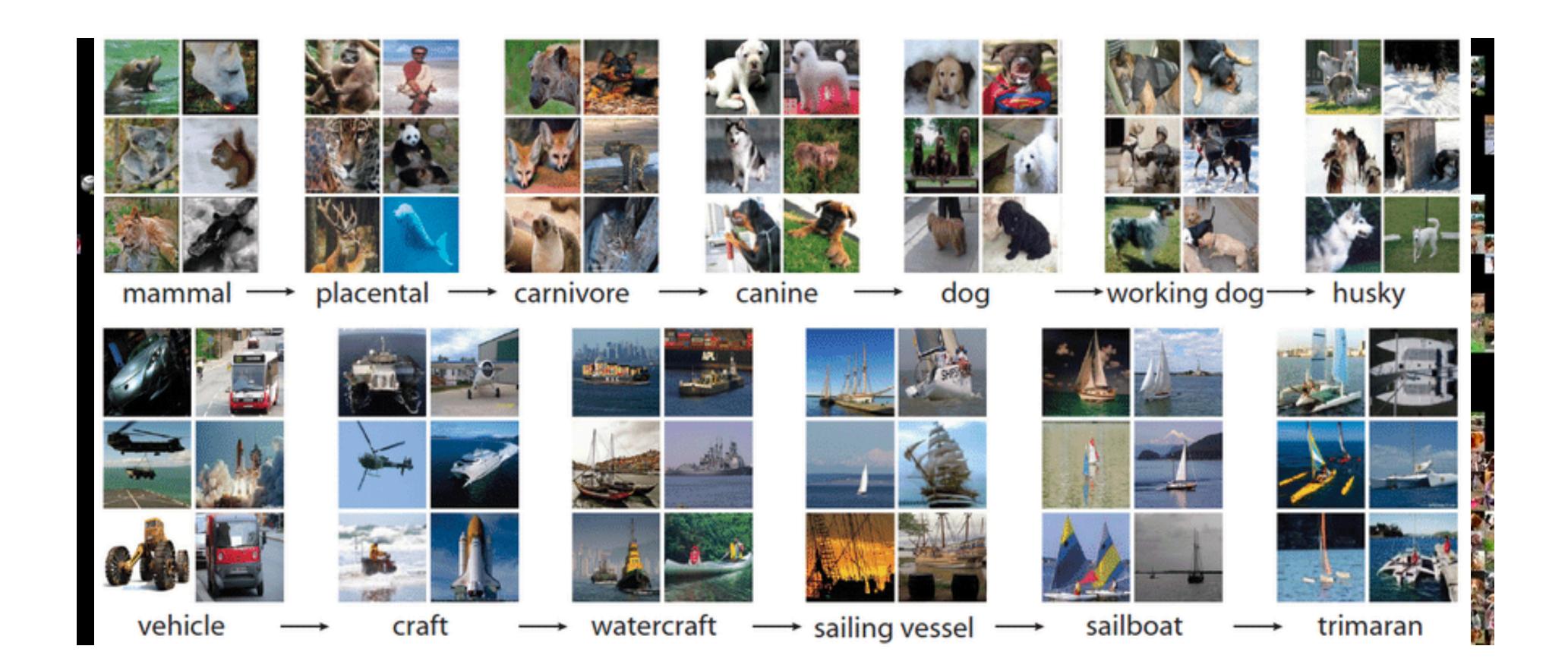
Static — Single

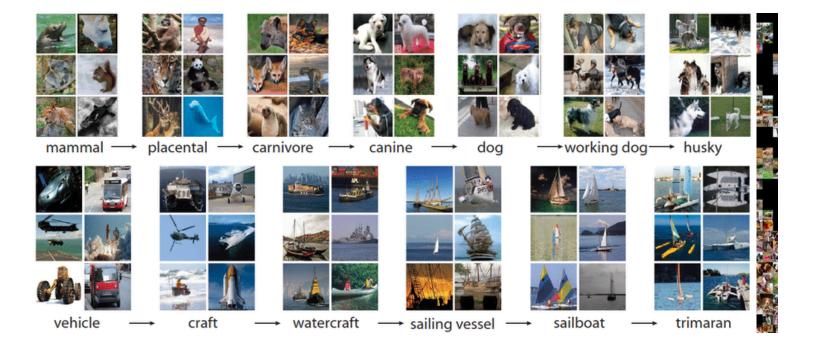
How to dynamically select the models?

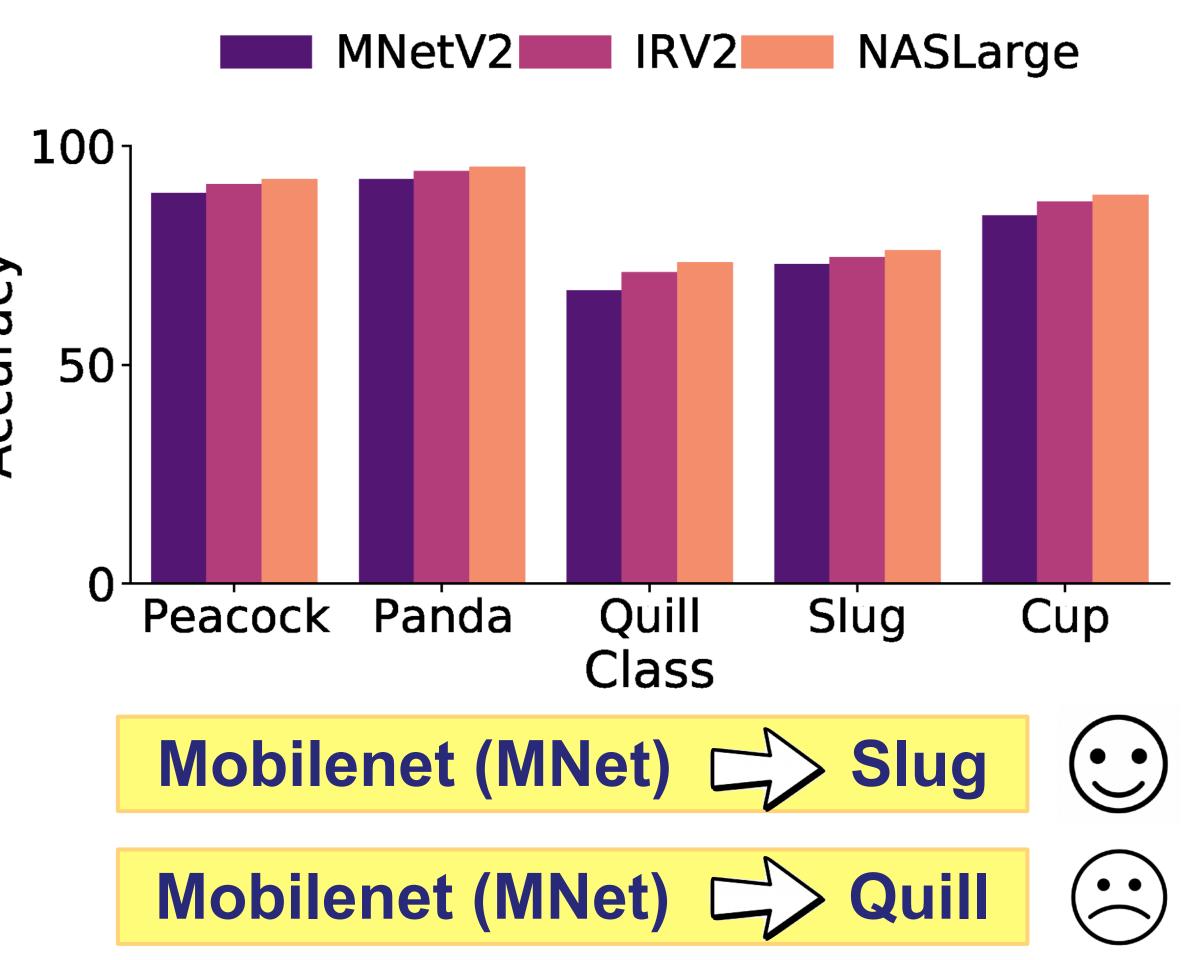


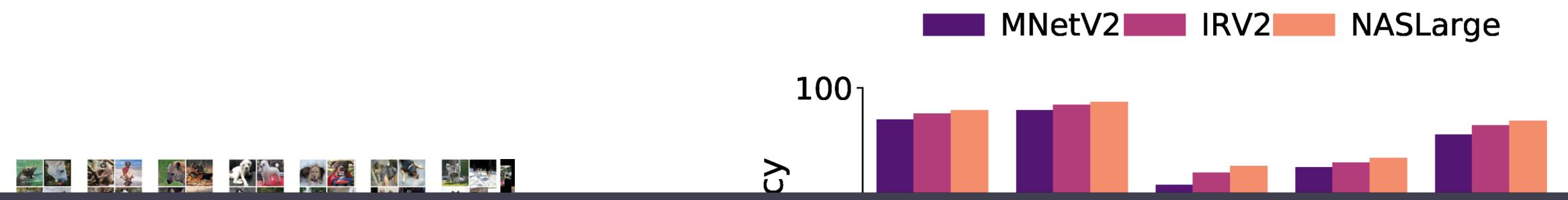
STATIC ENSEMBLING

Most accurate N/2

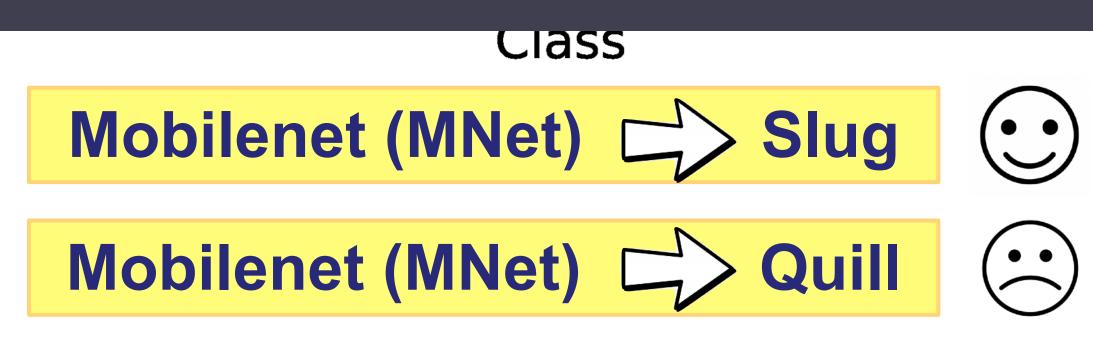


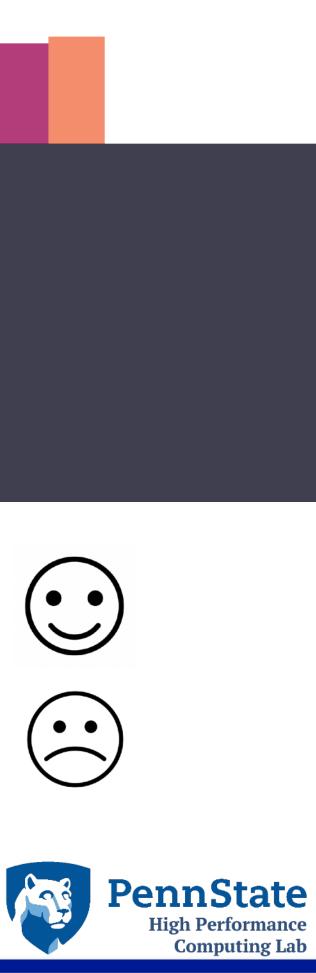




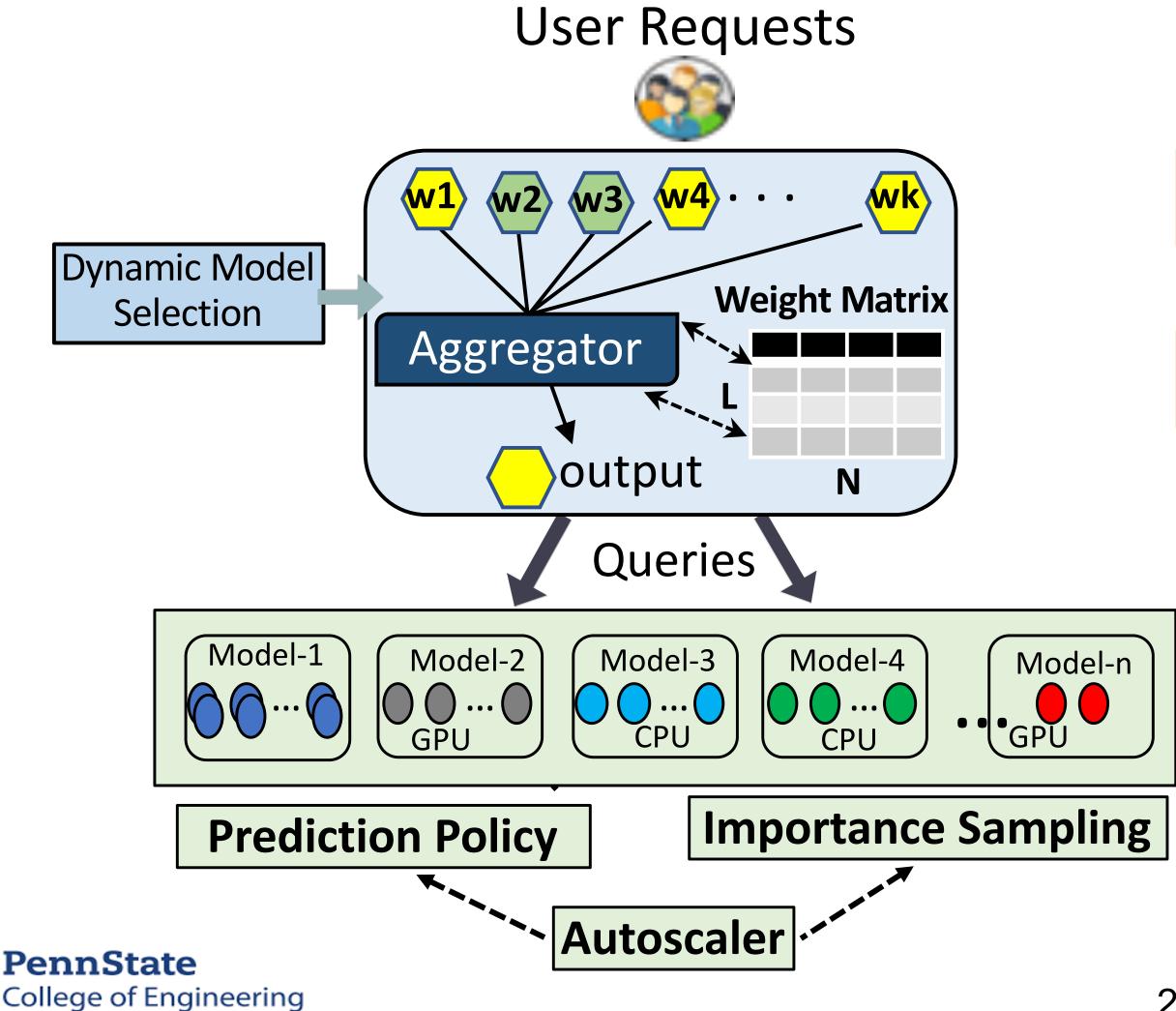


Leverage Class-wise Accuracy





COCKTAIL- MULTIDIMENSIONAL OPTIMIZATION FOR ENSEMBLE LEARNING IN CLOUD



Weighted Selection

Dedicated Pools

Per model Scaling

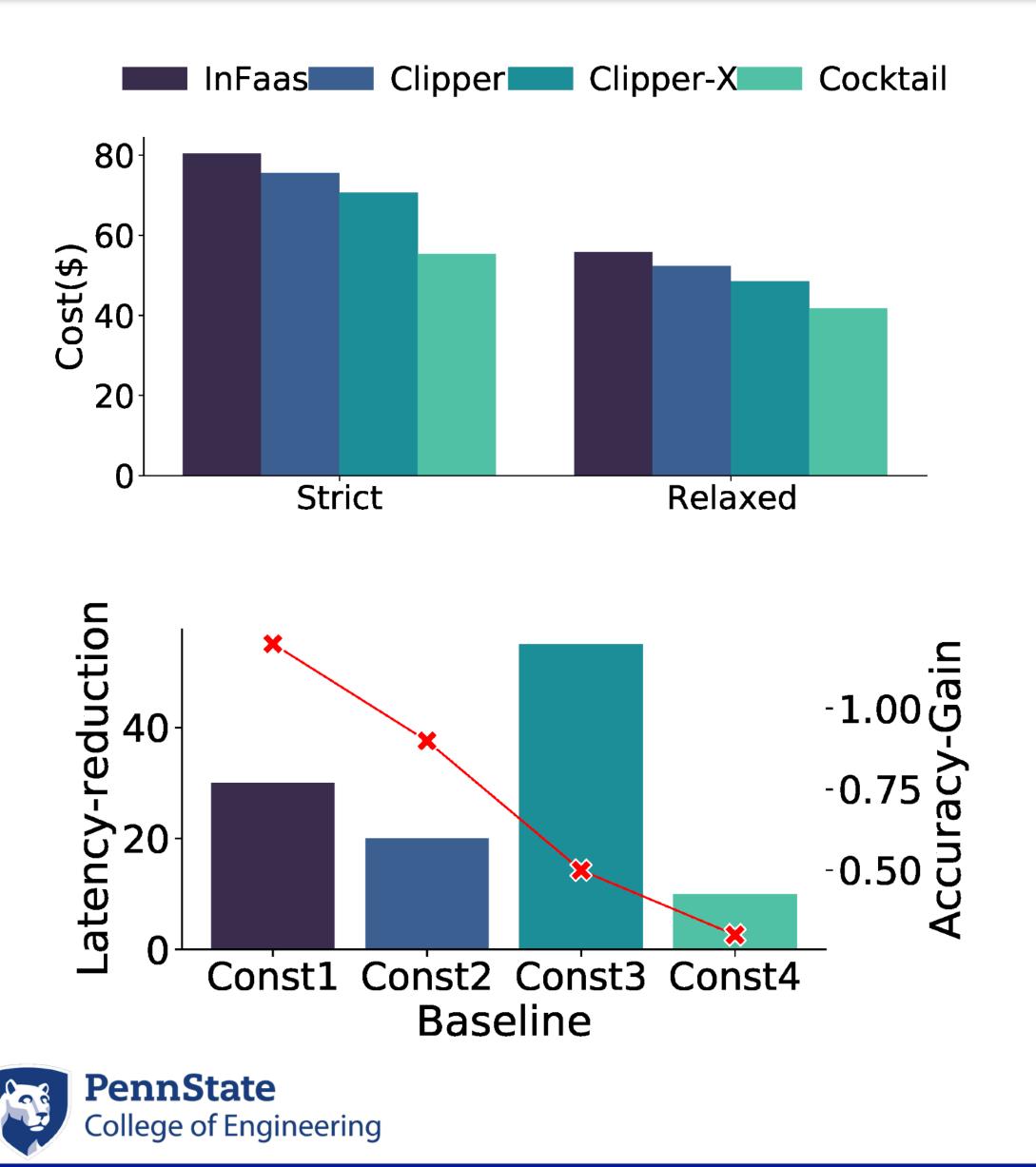
Fault tolerant

EVALUATION AND SETUP

Dataset	Application	Classes	Train-set	Test-set
ImageNet [56]	Image	1000	$1.2\mathrm{M}$	$50\mathrm{K}$
CIFAR-100 [116]	Image	100	$50\mathrm{K}$	10K
SST-2 [117]	Text	2	$9.6\mathrm{K}$	1.8K
SemEval [118]	Text	3	50.3K	12.2K

• 40 EC2 CPU/GPU VM.	S
----------------------	---

• Wiki Twitter Traces



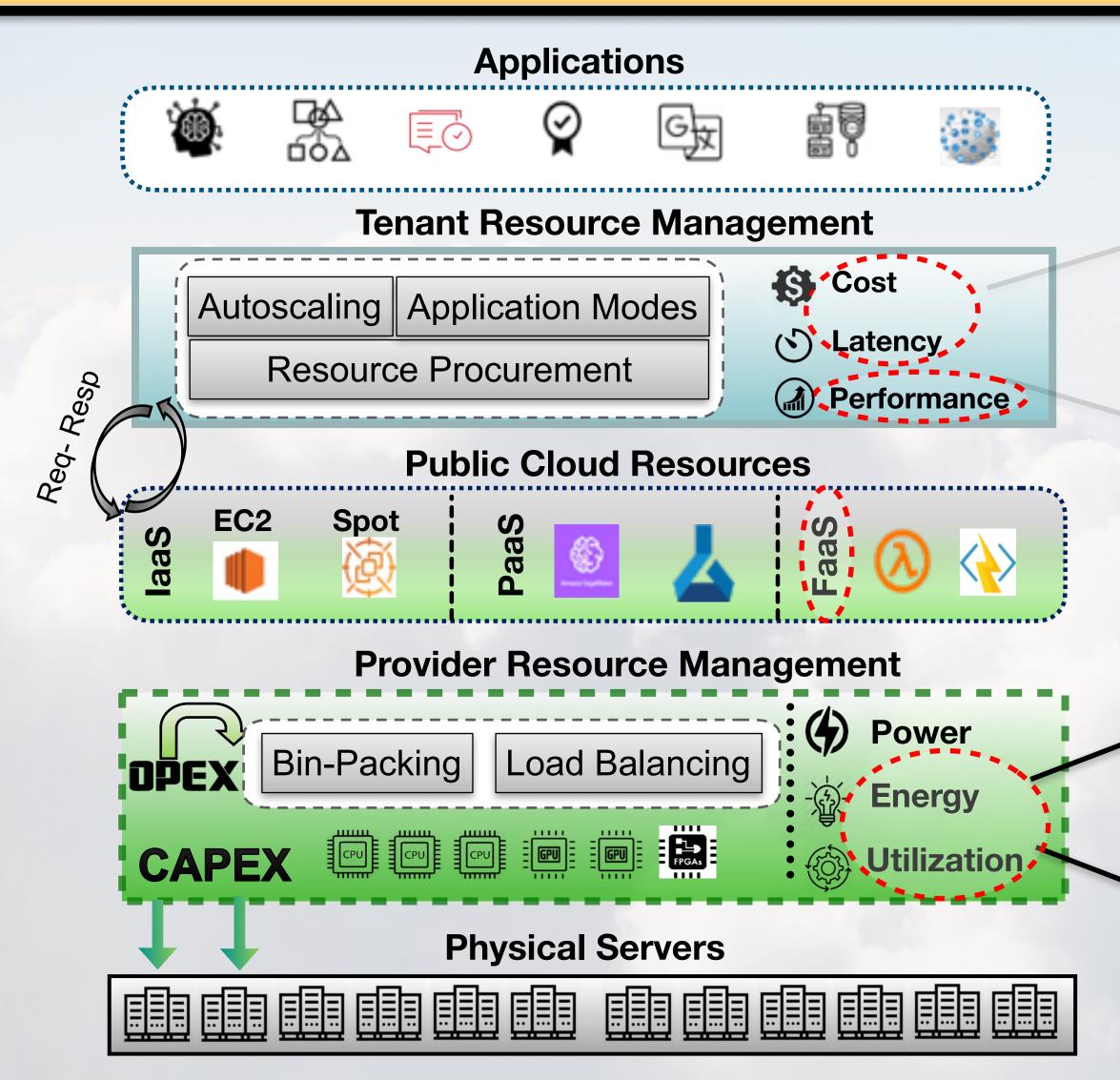
Cocktail incurs ~32% lower cost

Cocktail reduces #models by ~50% on average

Cocktail yields ~2x lower latency

Cocktail gains upto ~1.25% more accuracy

DISSERTATION CONTRIBUTIONS



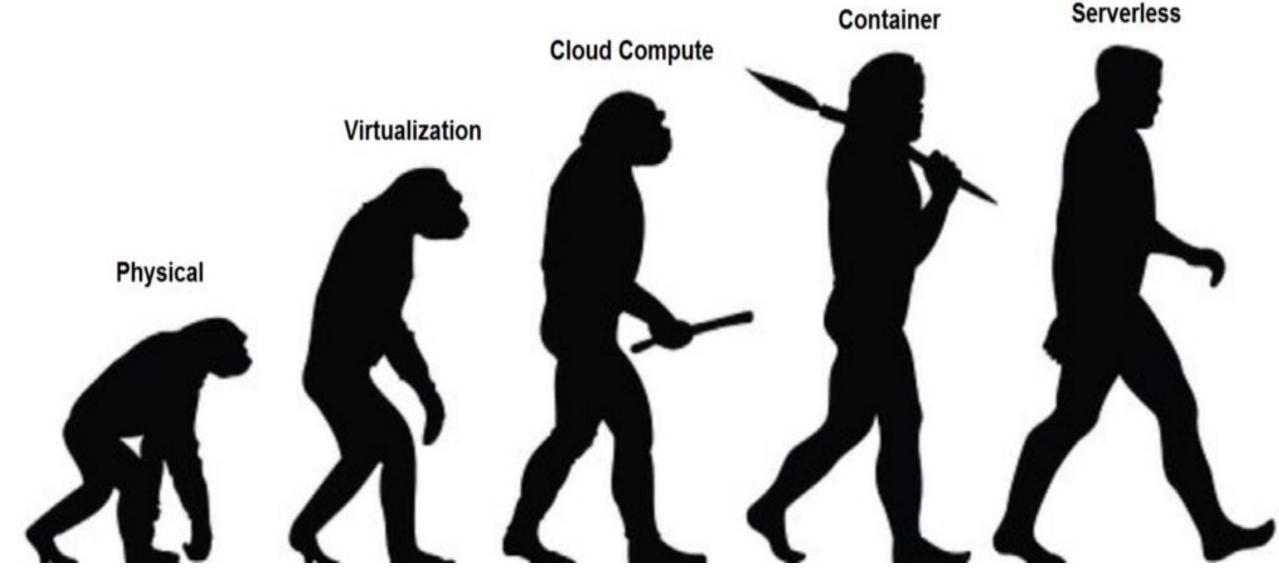
Spock- Cost Efficient and Latency Aware Autoscaling, IEEE CLOUD' 2019

Cocktail- Improving Machine Learning Performance at Low Cost, NSDI' 2021 (Under-Revision)

Fifer- Improving Energy Efficiency for Serverless Platforms, Middleware, ICDCS 2020

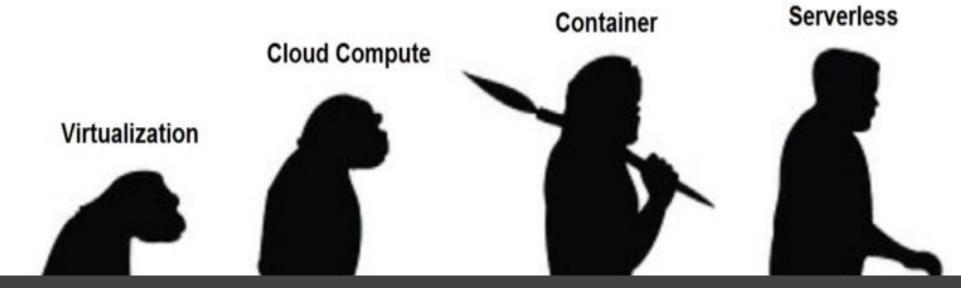
Multiverse- Improving Server Utilization for Private HPC Clusters, CCGrid' 2020

Computing Lab



58% use Serverless to reduce cost and accelerate development.

RECAP



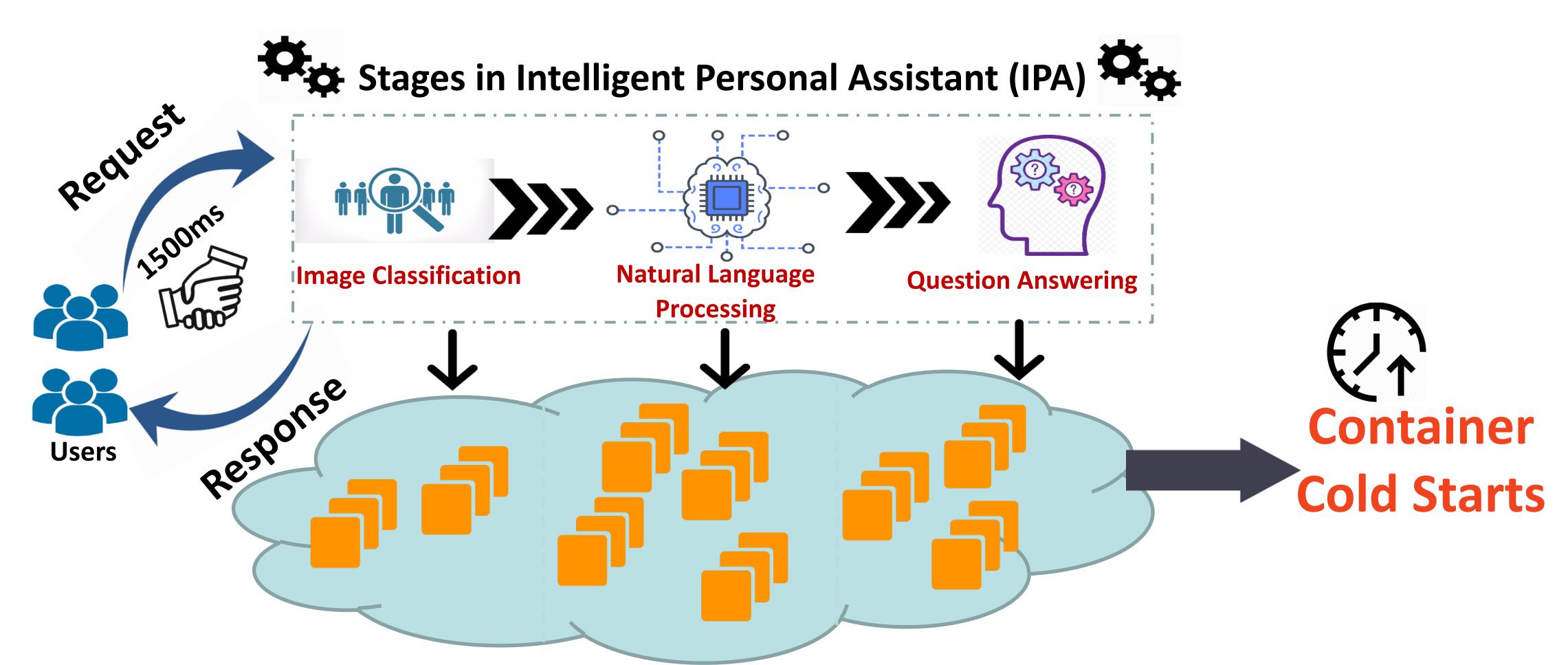
Dhycic

Provider Challenges?

58% use Serverless to reduce cost and accelerate development.

RECAP

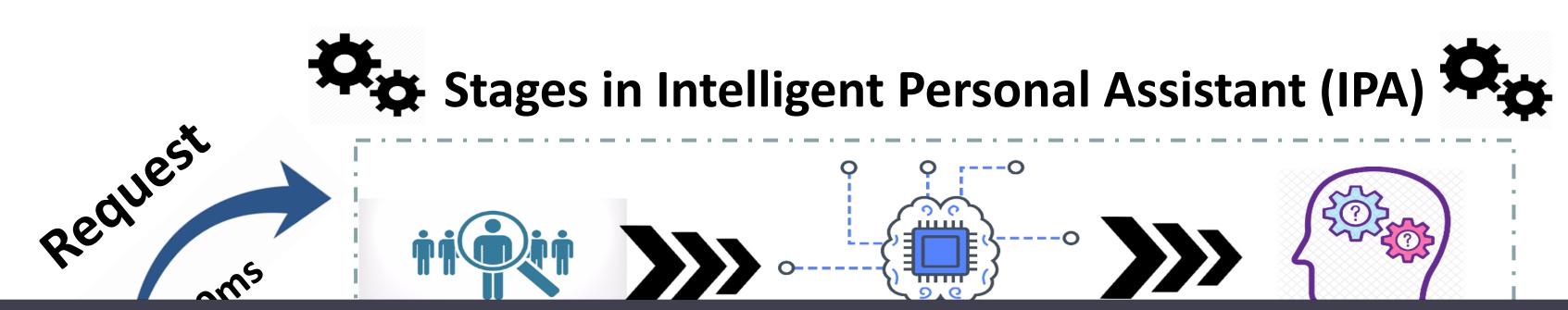
Serverless Function Chains



Containers for Each Microservice

PennState High Performance Computing Lab

SERVERLESS FUNCTION CHAINS



Containers for Each Microservice

PennState **Computing Lab**

CURRENT SERVERLESS PLATFORMS

- Spawn new containers if existing containers are busy. Leads to SLO violations due to cold-starts. Many idle containers. Wasted power and energy. AWS Lambda
- Employing static queuing of requests on fixed pool of containers Leads to SLO violations due to queuing.
- Not aware of application execution times and response latency requirements.

Colossal container overprovisioning.

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC'18 PennState College of Engineering

Shahrad et al, Serverless in the Wild, in ATC'21

CURRENT SERVERLESS PLATFORMS

 Spawn new containers if existing containers are busy. Leads to SLO violations due to cold-starts. Many idle containers. Wasted power and energy. AWS Lambda

requirements.

Colossal container overprovisioning.

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC'18 PennState College of Engineering

Not aware of application execution times and response latency

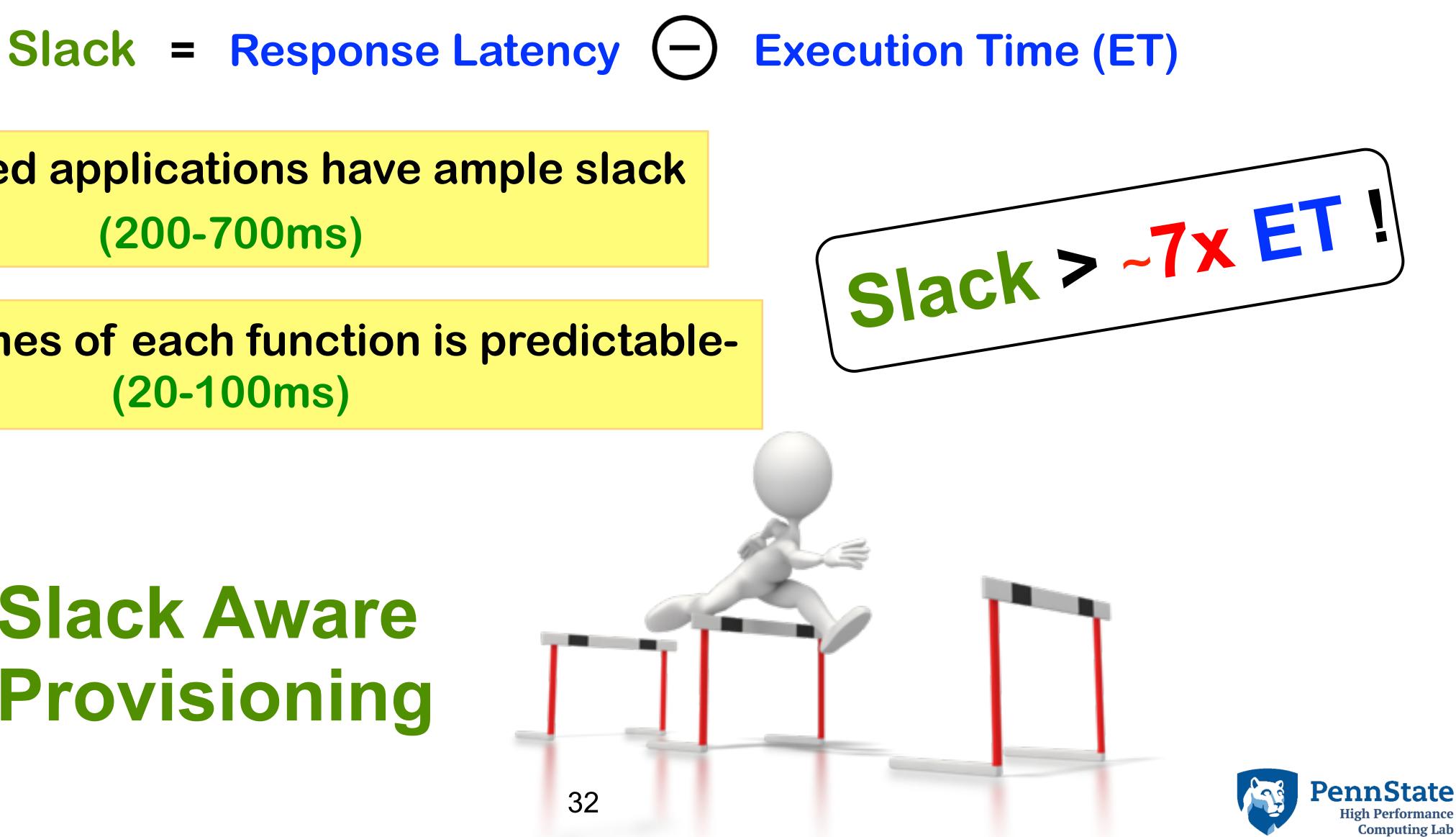
Shahrad et al, Serverless in the Wild, in ATC'21

KEY FINDINGS

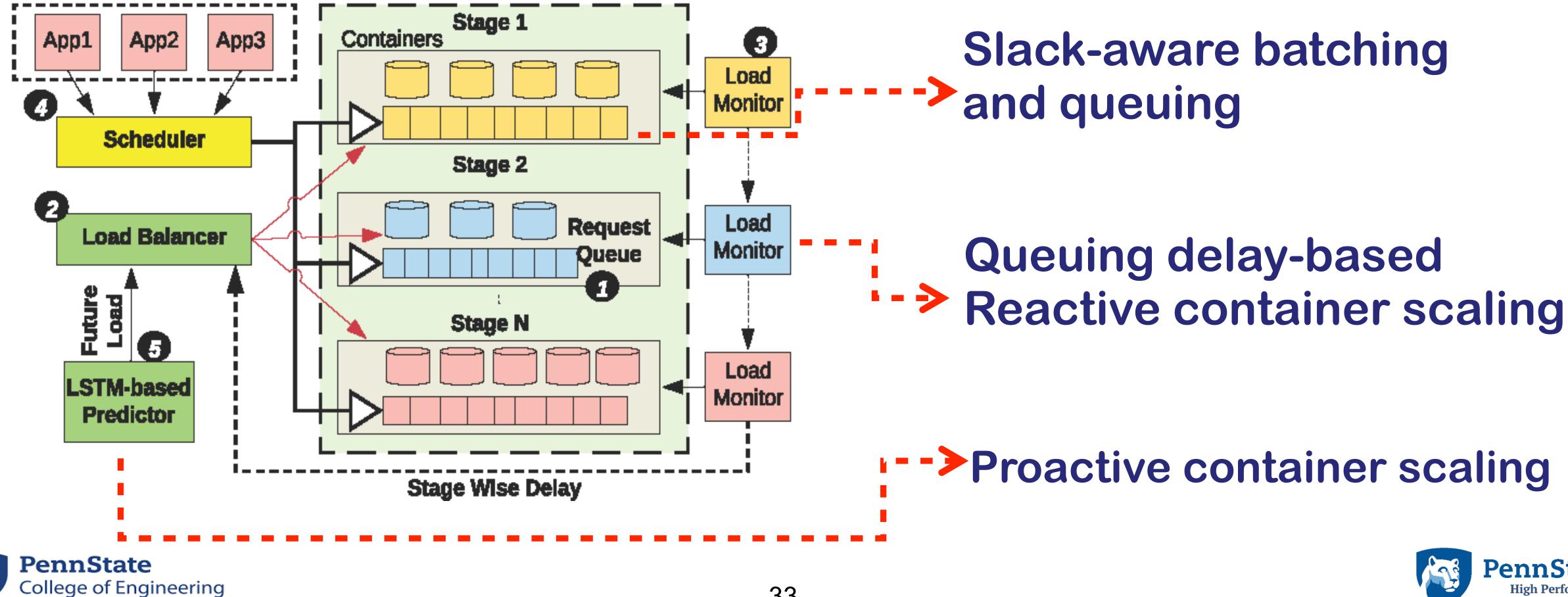
Multi-staged applications have ample slack (200-700ms)

Execution times of each function is predictable-(20-100ms)

Slack Aware Provisioning

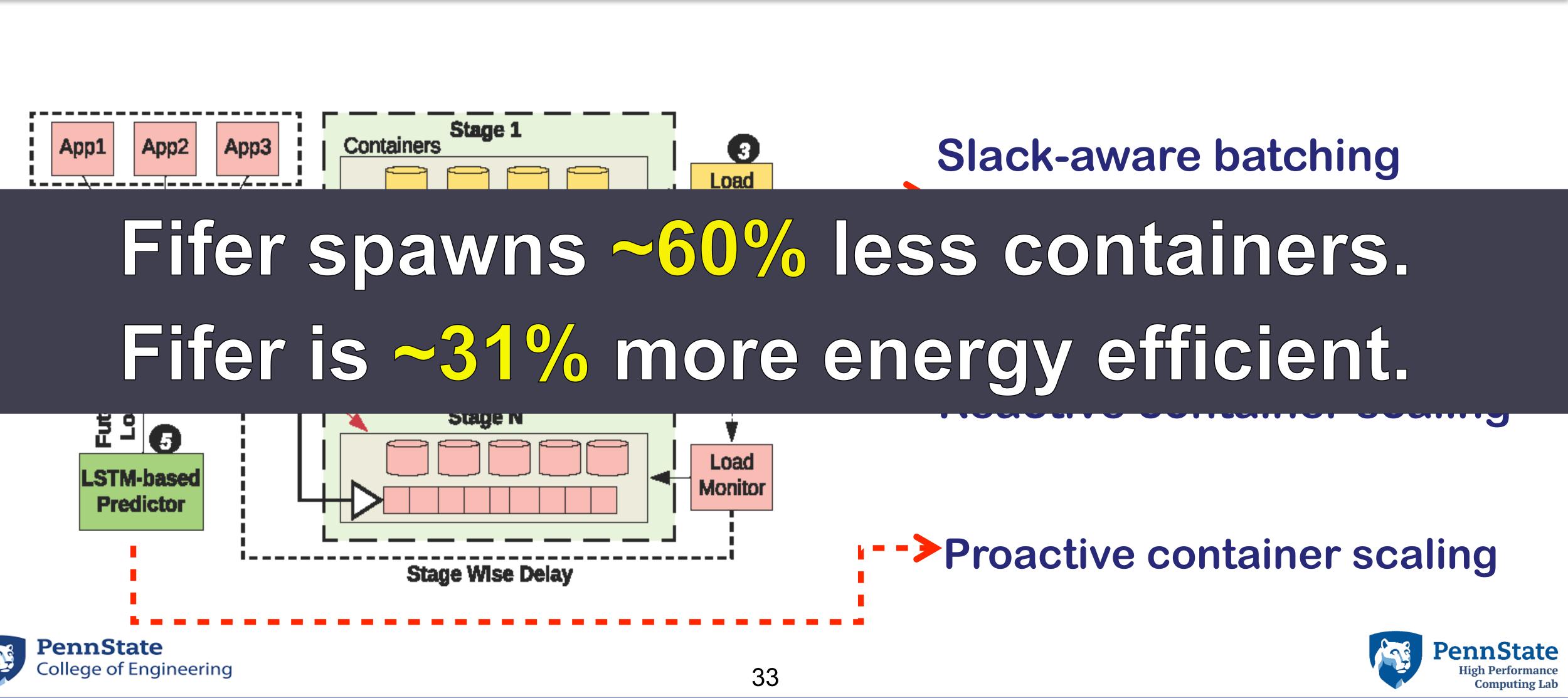


FIFER: STAGE-AWARE PROACTIVE CONTAINER PROVISIONING AND MANAGEMENT

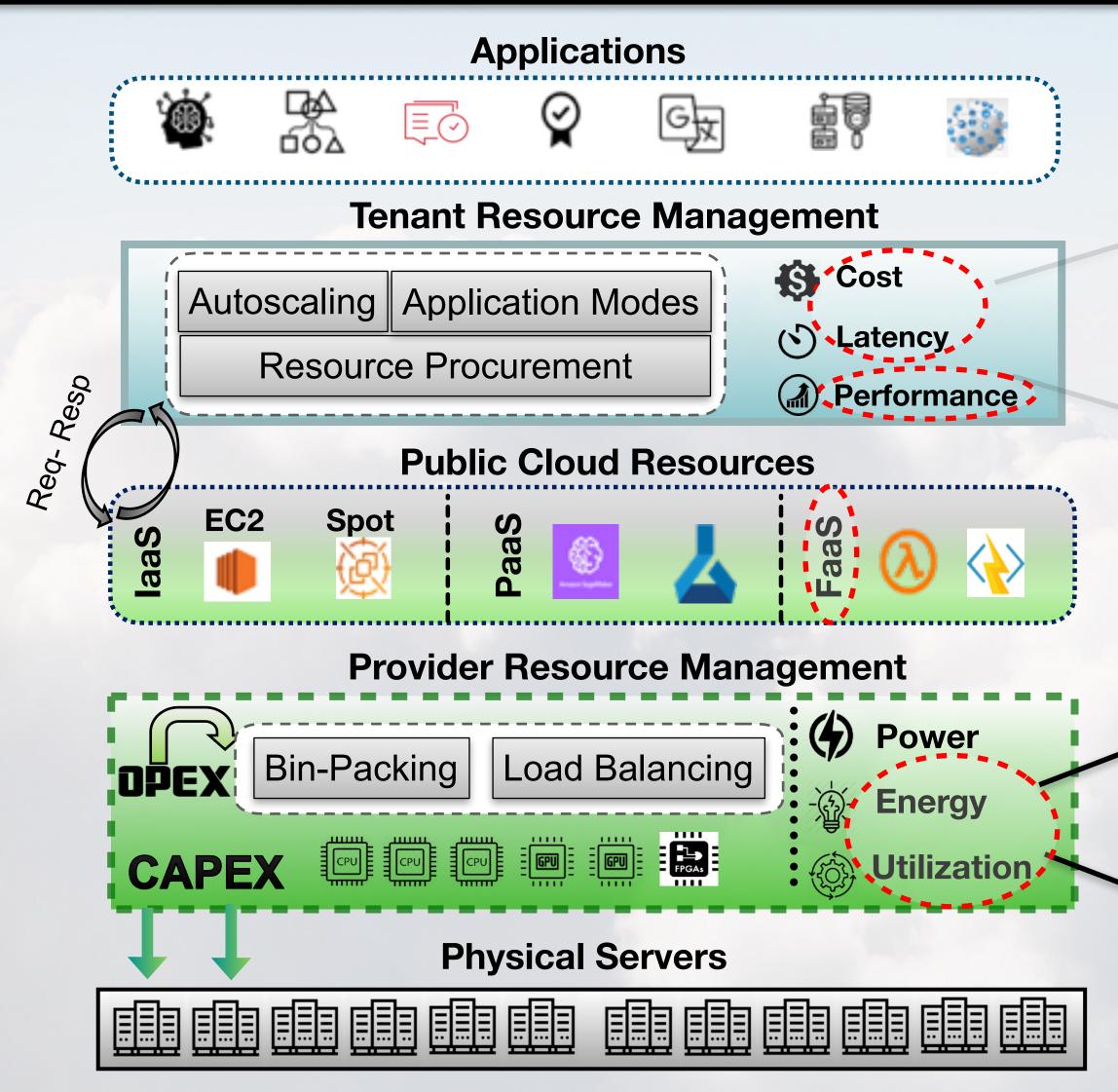


PennState High Performance Computing Lab

FIFER: STAGE-AWARE PROACTIVE CONTAINER PROVISIONING AND MANAGEMENT



DISSERTATION CONTRIBUTIONS



Spock- Cost Efficient and Latency Aware Autoscaling, *IEEE CLOUD' 2019*

Cocktail- Improving Machine Learning Performance at Low Cost, NSDI' 2021 (Under-Revision)

Fifer- Improving Energy Efficiency for Serverless Platforms, Middleware, ICDCS 2020

Multiverse- Improving Server Utilization for Private HPC Clusters, CCGrid' 2020

HIGH PERFORMANCE COMPUTING

VIRTUALIZED HPC

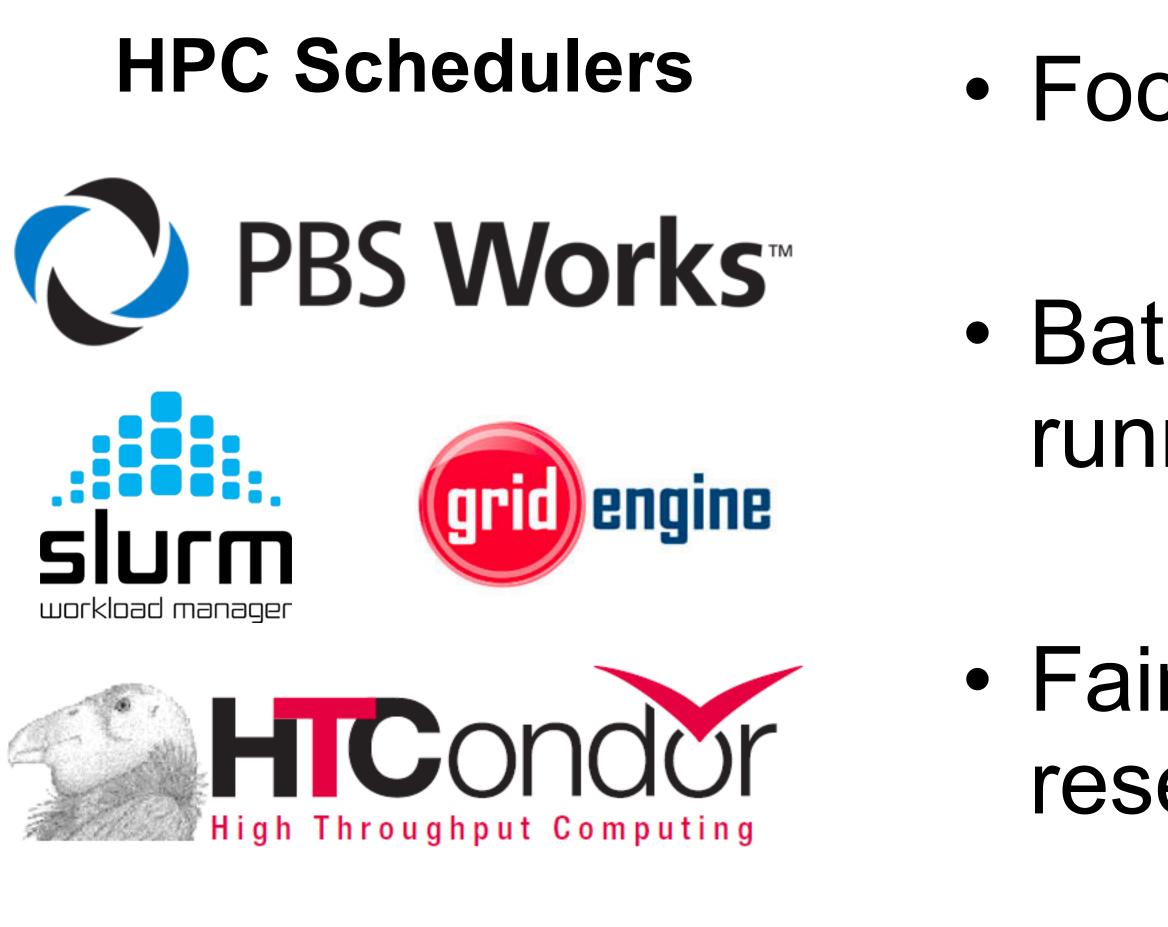


https://blogs.vmware.com/apps/2018/09/vhpc-ra-part1.html

Heterogeneous Compute

Flexibility

Isolation and Security



CHALLENGES WITH HPC

- Focus on throughput and utilization.
- Batch Jobs are usually long running.
- Fair sharing and fixed node reservations.

PennState High Performance **Computing Lab**

HPC Schedulers

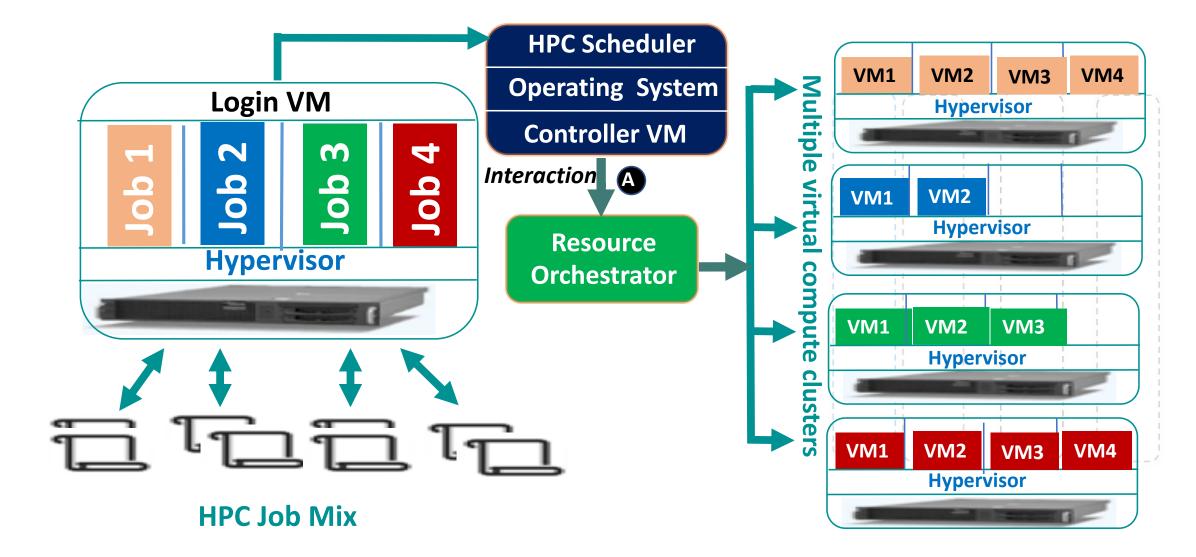
No interaction with VM orchestrators Results in Underutilization

CHALLENGES WITH HPC

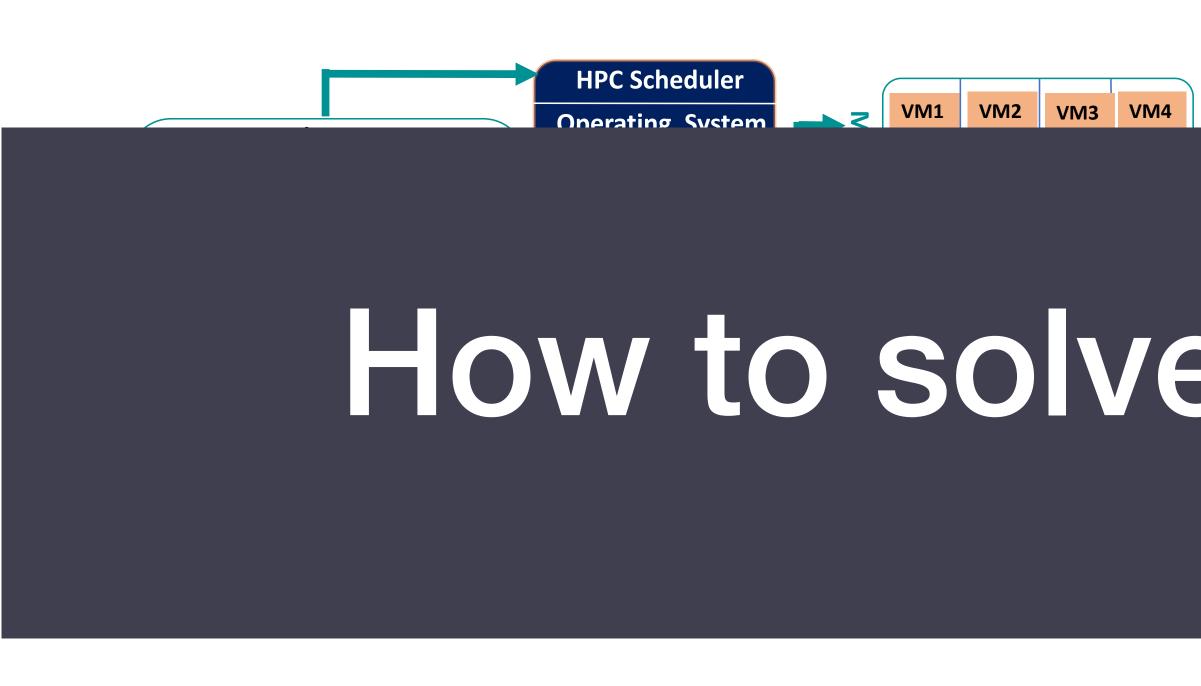
Focus on throughput and utilization.

reservations.

WHY UNDERUTILIZATION?



- Static Provisioning
- High provisioning times
- Manual Scaling
- No information about physical cluster resources

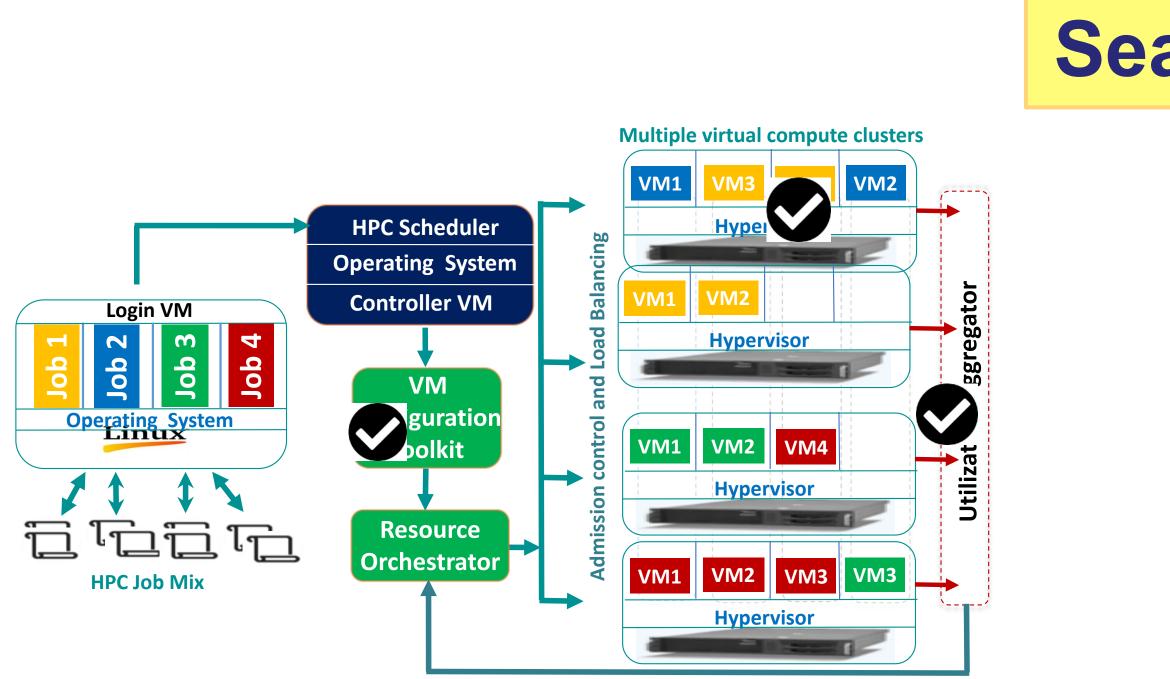


Static Provisioning

How to solve this problem?

ciusier resources

MULTIVERSE- DYNAMIC VM PROVISIONING FOR HIGH PERFORMANCE COMPUTING CLUSTERS



Seamless interaction with integration

Dynamic VM Provisioning

Leverage Instant Clone

Expose Real-time Cluster Statistics

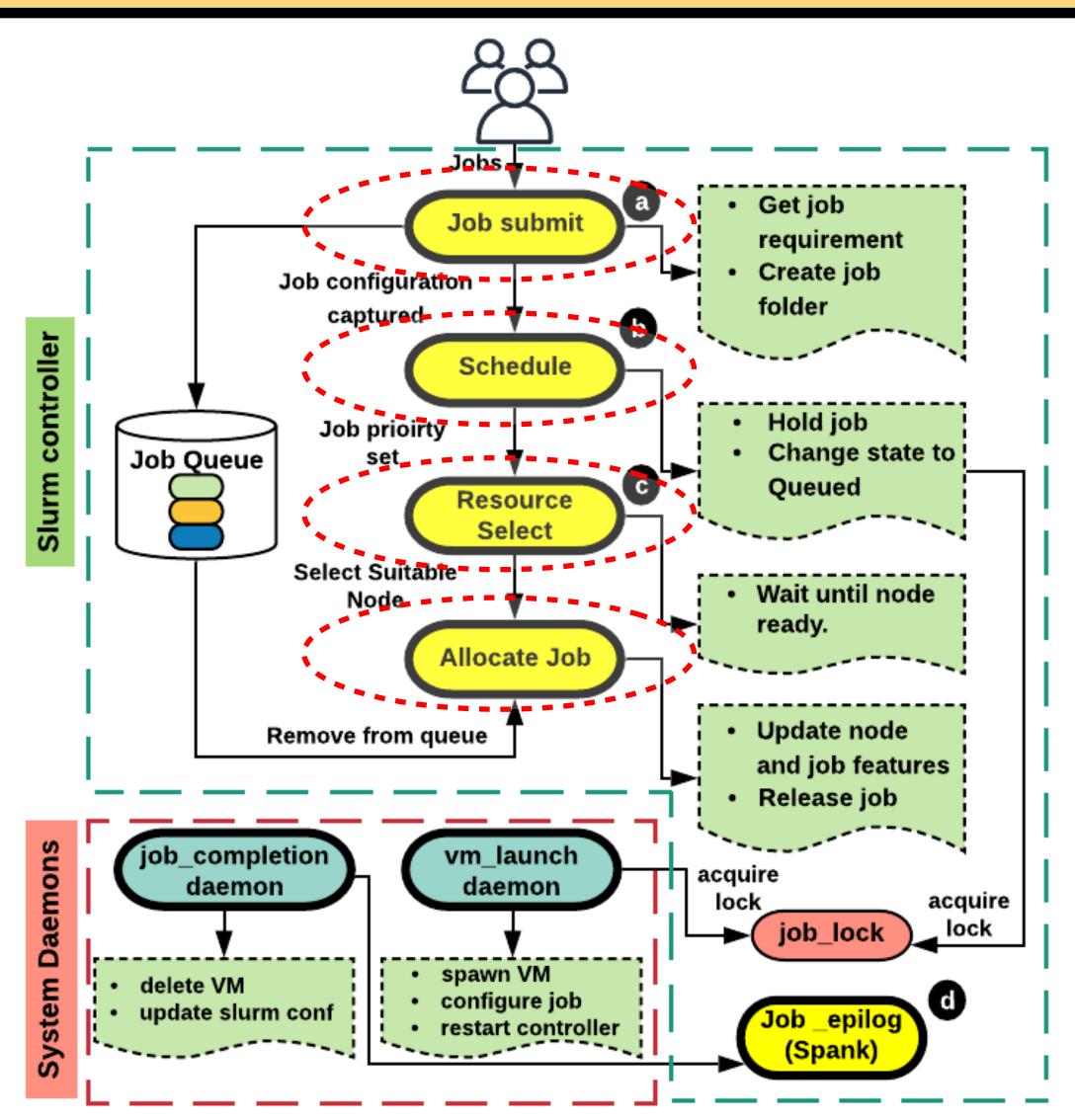
- Parse Job Requirements
- Customized VM launch
- Map Jobs to VMs (concurrency)

We built a thread safe finite-state machine using linux flock utility.

MULTIVERSE DESIGN

- Need to be thread-safe
- Schedulers are multi-threaded and are thread-safe.

IMPLEMENTATION ON SLURM



Each phase corresponds to a plugin

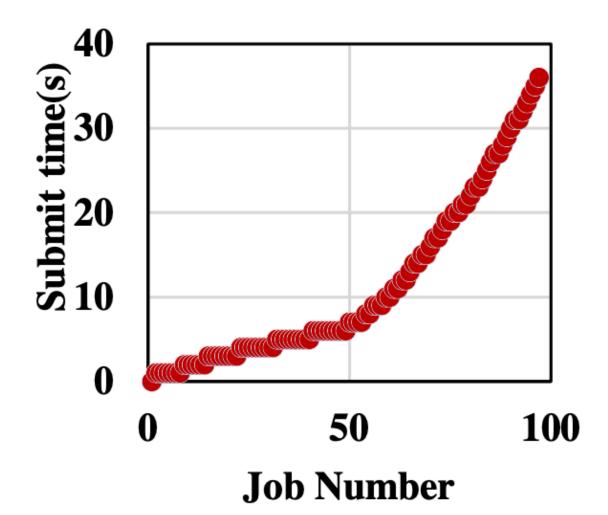
System Daemons ensure concurrency

Spank Plugins for VM Cleanup

Experiment Setup

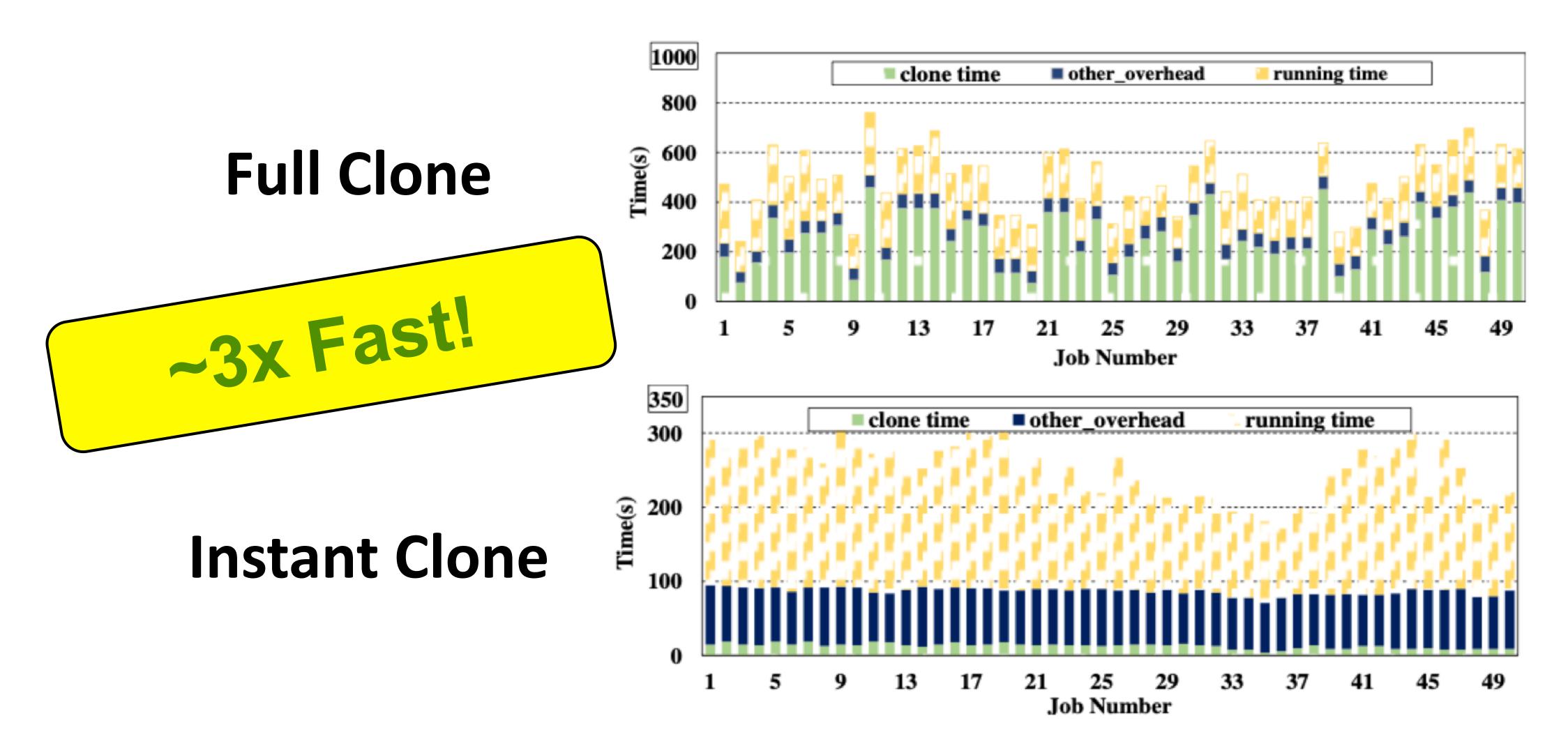
- 220 core HPC cluster.
- 1TB Memory
- 72TB shared datastore

EVALUATION SETUP



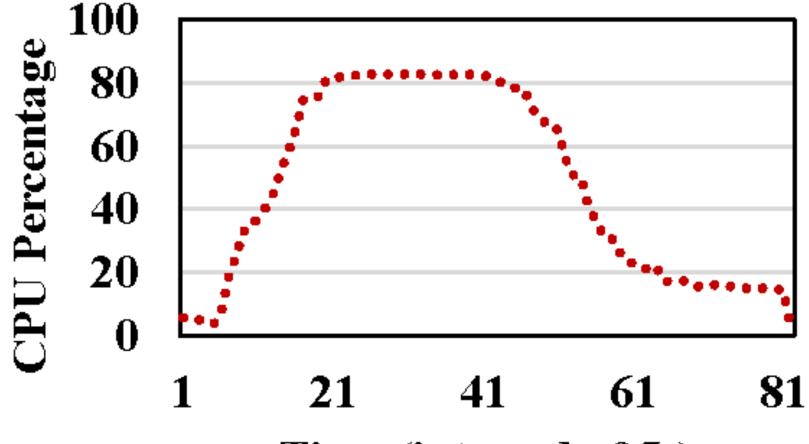
Workload

- HPCC, HPL, RandomAccess.
- Small (2vCPU, 4GB), Large (8vCPU, 16GB)
- 50 job/s, 100jobs/s



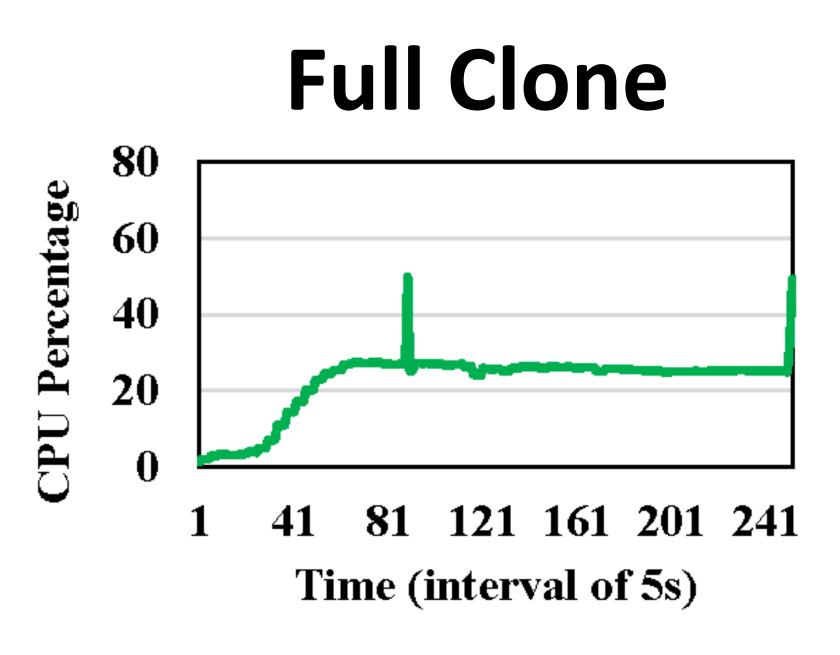
MAJOR RESULTS

Instant Clone



Time (interval of 5s)

MAJOR RESULTS



~1.5x more throughput. ~40% higher CPU utilization.

FUTURE RESEARCH DIRECTIONS

SHORT TERM

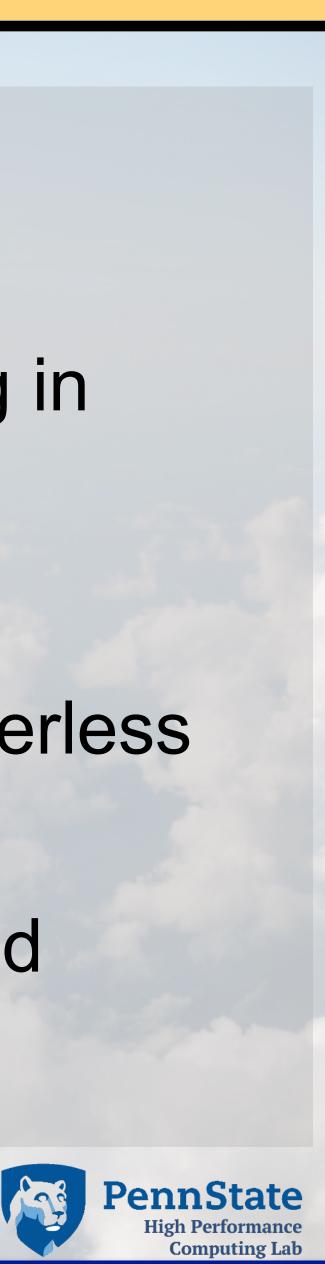
- Dynamic DAGs in Serverless
- Stateful Serverless
 Storage Costs
- Machine Learning Training Costs

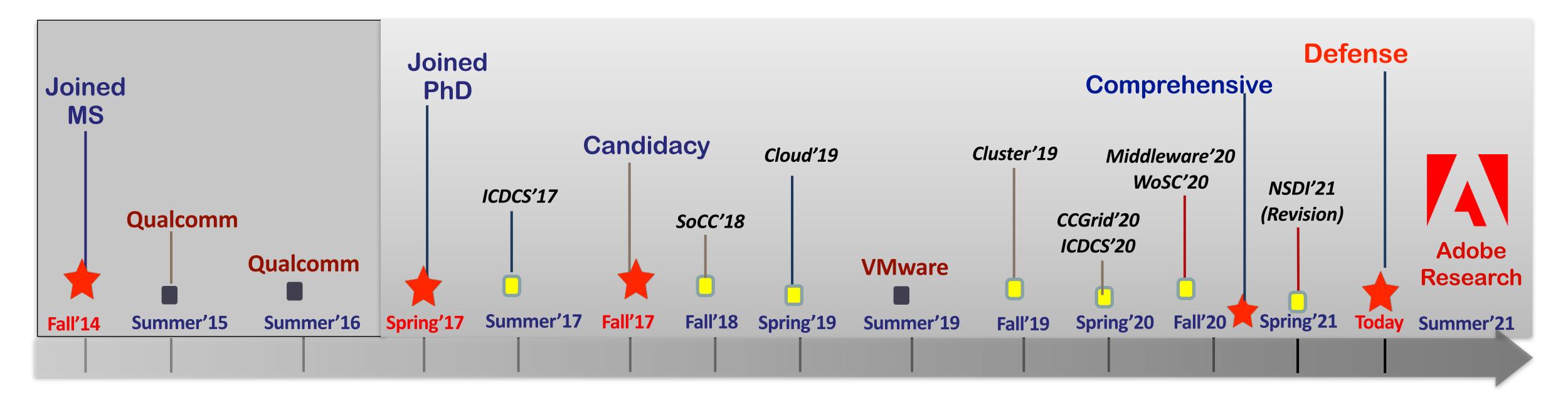
LONG TERM

 Federated learning in Public Cloud

 Online Real-time training using serverless

HPC in public cloud





MY TIMELINE

Milestones **Outations** Internships

DOCTORAL COMMITTEE

Dr. Mahmut Kandemir Dissertation Co-Advisor

Professor Department of CSE

Dr. Bhuvan Urgaonkar **Committee Member**

Associate Professor Department of CSE

Dr. Anton Nekrutenko Committee Member

Professor Department of BME

Dr. Chita Das **Dissertation Co-Advisor Distinguished Professor Head** of CSE Department

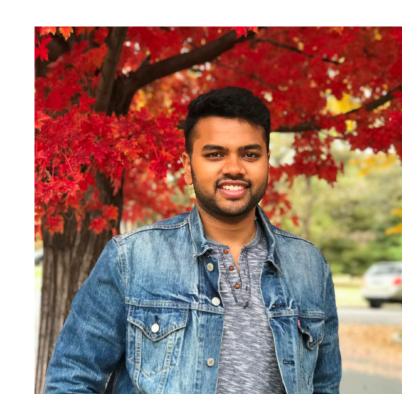
Dr. George Kesidis Committee Member

Professor Department of CSE

Dr. Bikash Sharma Special Member Infrastructure Engineer Facebook

ACKNOWLEDGEMENTS

Nachiappan



Adhi (My Wife)

Prashanth

Prasanna

ACKNOWLEDGEMENTS

All other fellow lab mates

Thank You

