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RESEARCH PHILOSOPHY

Cloud is about how you do computing, 
not where you do computing! 

Paul Maritz, Former CEO, Vmware
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deep-learning-for-beginners-types-of-machine-
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What is the problem? 

Source: Gartner
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GRAD STUDENTSNOT ONLY

WE JUST GOT OUR CLOUD BILLS THIS MONTH 

I don’t have the money to 
pay this time! I should ask 

Dr Kandemir’s Pcard! 

I forgot to turn off my 
VMs! Dr Kesidis will 

be furious! I exceeded my free quota! 
Will Dr Das help me?

I chose the wrong tier!  
Wasted Dr. Bhuvan’s grant 

money!
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GRAD STUDENTSGRAD STUDENTSCLOUD CLIENTSNOT ONLY

WE JUST GOT OUR CLOUD BILLS THIS MONTH 

I don’t have the money to 
pay this time! I should ask 

Dr Kandemir’s Pcard! 

I forgot to turn off my 
VMs! Dr Kesidis will 

be furious! I exceeded my free quota! 
Will Dr Das help me?

I chose the wrong tier!  
Wasted Dr. Bhuvan’s grant 

money!

BUT ALSO

Why is cost important? 
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Resource Selection AutoScaling

~35% ~73% ~77% 

What about providers? 



PROVIDER EXPENDITURE
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Amortized cost of 50000 servers in 
Microsoft datacenter. Source:  The 
Cost of Cloud, ACM SIGCOMM’09
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PROVIDER SIDE PROBLEMS
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Source:Alibaba Datacenter Case Study, IEEE Access’19

~42-65%      ~13-40%      

Communication

Overstated Requirements

Blackbox Applications 

Overprovisioning

Tenants Providers



SERVERLESS COMPUTING

“...Distributed Event-based programming Service...” - OpenWhisk 

“Run code without thinking about servers.Pay for only the compute time you 
consume” - AWS Lambda 

“...logic can be spun up on-demand in response to events originating from 
anywhere….” - Google Cloud Functions 
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SERVERLESS COMPUTING

“...Distributed Event-based programming Service...” - OpenWhisk 

“Run code without thinking about servers.Pay for only the compute time you 
consume” - AWS Lambda 

“...logic can be spun up on-demand in response to events originating from 
anywhere….” - Google Cloud Functions 
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58% Very Fast 
Startup

Hard to estimate demand 
Guaranteeing Performance 
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Clipper, NSDI’17 

FGCS’02 
 Google, IEEE Computer’07 
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Microsoft, SOSP’17 
How to solve? 
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Multiverse- Improving Server Utilization for Private 
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$7.3B in 2020 to $30.6B in 
2024,43% CAGR 

100,000 ML customers in AWS 
Cost

Performance
Latency

Applications

Fifer- Improving Energy Efficiency for Serverless 
Platforms, Middleware 2020, ICDCS 2020

Cocktail- Improving Machine Learning Performance 
at Low Cost, NSDI’ 2021 (Under-Revision), WoSC’2021

Spock- Cost Efficient and Latency Aware 
Autoscaling, IEEE CLOUD’ 2019
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• Utilization based autoscaling- Urgaonkar et al PODC’03 
➡ Not suitable for millisecond scale applications 

• Relaxed VM scale down -  Gandhi et al SC’12, TOCS’12 
➡ Intermittent over-provisioning 

• Exploiting different VM instance types Wang et al. Eurosys’17,  

➡ They are complementary to our proposal.

PRIOR WORKS

13
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• Relaxed VM scale down -  Gandhi et al SC’12, TOCS’12 
➡ Intermittent over-provisioning 

• Exploiting different VM instance types Wang et al. Eurosys’17,  

➡ They are complementary to our proposal.

PRIOR WORKS

Only VM based solutions are largely 
expensive

13



KEY FINDINGS

14

Bursty

VMs

VMs

Cost SLOResource

Known 
Demand

Reduced 
Scaling

Arrival

Predictable

Deep Learning 
Inferences

VMs Pay per 
use

Pre 
warmed

Over 
provisioned

Too much 
Scaling

Per-unit   
Cost

Pre 
warmed



KEY FINDINGS

14

Bursty

VMs

VMs

Cost SLOResource

Known 
Demand

Reduced 
Scaling

Arrival

Predictable

Deep Learning 
Inferences

VMs Pay per 
use

Pre 
warmed

Over 
provisioned

Too much 
Scaling

Per-unit   
Cost

Pre 
warmed

Can we multiplex both?
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SPOCK: EXPLOITING SERVERLESS FUNCTIONS 
FOR SLO AND COST AWARE AUTOSCALING

➢ Offload queries to lambdas 
while starting new VMs. 

➢ Reduces SLO violations during 
request  surge. 

➢ Reduce intermittent over-
provisioning VMs
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SPOCK: EXPLOITING SERVERLESS FUNCTIONS 
FOR SLO AND COST AWARE AUTOSCALING

➢ Offload queries to lambdas 
while starting new VMs. 

➢ Reduces SLO violations during 
request  surge. 

➢ Reduce intermittent over-
provisioning VMs

                     
            Spock reduces SLO violations by ~74% with            

~33% cost savings
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In Netflix, 75% of 
viewer activity is based 

on these accurate 
suggestions. 

Accuracy

How to improve accuracy with low  
latency and low cost?



PRIOR WORK IN MODEL SERVING

Crankshaw et al  CIDR’15, NSDI’17, SoCC’20 
Yadawkar et al Arxiv’19 
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–  Clipper uses model ensembling to achieve higher 
accuracy.

Metrics

Cost Latency Accuracy
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Crankshaw et al  CIDR’15, NSDI’17, SoCC’20 
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– InFaas uses different resource types to ensure low 
latency at low cost. 

–  Clipper uses model ensembling to achieve higher 
accuracy.

Metrics

Cost Latency Accuracy

How to do ensembling?

Large Model
Small 
Models
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High Resource Footprint 
What about Model Selection?

Model Ensembling Framework



Most accurate model  
✴~2x parameters, latency  
✴~2% more accuracy

▪ How to bridge the 2% 
accuracy gap? 

▪ What about cost?

19

MODEL SPACE EXPLORATION

IEEE Access’18 Benchmark Analysis of Representative Deep Neural Network Architectures



Most accurate model  
✴~2x parameters, latency  
✴~2% more accuracy

▪ How to bridge the 2% 
accuracy gap? 

▪ What about cost?
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How to ensemble?

MODEL SPACE EXPLORATION

IEEE Access’18 Benchmark Analysis of Representative Deep Neural Network Architectures



FULL ENSEMBLE
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Combine all models which are under the 
latency of  baseline model. 

Model Set: Top 12 frequently used models 
from Keras Tensorflow

Choose baseline models in decreasing 
order of  accuracy
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Combine all models which are under the 
latency of  baseline model. 

Model Set: Top 12 frequently used models 
from Keras Tensorflow

Choose baseline models in decreasing 
order of  accuracy

What about Cost?



21

FULL ENSEMBLING COST

Ensembling is up-to 2x 
expensive.
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FULL ENSEMBLING COST

Ensembling is up-to 2x 
expensive.

Spot instances can 
potentially reduce cost.

Transient instances- 70-80% cheaper. 
Can be revoked with short notice.



WHAT CAN WE DO?

✦ Do we need so many models? 
✦ How to autoscale resources for each 

model? 
✦ How to handle instance failures?

22
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Accuracy

Compared to Full-Ensemble (N models)

STATIC ENSEMBLING

Most accurate N/2 
models
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Accuracy

Compared to Full-Ensemble (N models)

STATIC ENSEMBLING

Most accurate N/2 
models

How to dynamically select the models?
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Mobilenet (MNet)          Slug 
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Leverage Class-wise Accuracy

Mobilenet (MNet)          Quill 

Mobilenet (MNet)          Slug 



COCKTAIL- MULTIDIMENSIONAL OPTIMIZATION FOR 
ENSEMBLE LEARNING IN CLOUD

25

Class-wise dictionary 

Weighted Selection 

Dedicated Pools 

Per model Scaling …… … … …
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. . . 
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Weight Matrix

L
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Dynamic Model 
Selection



EVALUATION AND SETUP
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Experiment Setup 
• 40 EC2 CPU/GPU VMs  
• Wiki Twitter Traces



MAJOR RESULTS
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Cocktail incurs ~32% lower cost 

Cocktail reduces #models by ~50% 
on average

Cocktail yields ~2x lower latency 

Cocktail gains upto ~1.25% more 
accuracy
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DISSERTATION CONTRIBUTIONS
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Provider Challenges?
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Cold-starts contribute ∼2000 to 7500 ms 
overheads to overall latency



• Spawn new containers if existing containers are busy.   
➡ Leads to SLO violations due to cold-starts. 
➡Many idle containers. Wasted power and energy. 

• Employing static queuing of requests on fixed pool of 
containers 
➡Leads to SLO violations due to queuing. 

• Not aware of application execution times and response latency 
requirements.  
➡ Colossal container overprovisioning.

CURRENT SERVERLESS PLATFORMS

31

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18 Shahrad et al, Serverless in the Wild, in ATC’21 
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• Not aware of application execution times and response latency 
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➡ Colossal container overprovisioning.

CURRENT SERVERLESS PLATFORMS

31

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18 

How can we do better?

Shahrad et al, Serverless in the Wild, in ATC’21 



KEY FINDINGS
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Multi-staged applications have ample slack  

(200-700ms)

Slack Aware 
Provisioning

Execution times of  each function is predictable- 
(20-100ms)

Slack   =   Response Latency            Execution Time (ET)

Slack > ~7x ET !
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PROVISIONING AND MANAGEMENT

Slack-aware batching 
and queuing

Proactive container scaling

Queuing delay-based 
Reactive container scaling
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Fifer spawns ~60% less containers. 
Fifer is ~31% more energy efficient.
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HIGH PERFORMANCE COMPUTING
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VIRTUALIZED HPC

36

https://blogs.vmware.com/apps/2018/09/vhpc-ra-part1.html

Isolation and Security

Flexibility 

Heterogeneous Compute



CHALLENGES WITH HPC

37

HPC Schedulers • Focus on throughput and utilization. 

• Batch Jobs are usually long 
running. 

• Fair sharing and fixed node 
reservations.



CHALLENGES WITH HPC

37

HPC Schedulers • Focus on throughput and utilization. 

• Batch Jobs are usually long 
running. 

• Fair sharing and fixed node 
reservations.

No interaction with VM orchestrators 
Results in Underutilization 
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How to solve this problem? 



MULTIVERSE- DYNAMIC VM PROVISIONING FOR HIGH 
PERFORMANCE COMPUTING CLUSTERS

39

Hypervisor

VM1 VM3 VM4 VM2

Hypervisor

VM1 VM2

Hypervisor

VM1 VM2 VM4

Hypervisor

VM1 VM2 VM3 VM3

Multiple virtual compute clusters

Controller VM

Operating  System
HPC Scheduler

Resource 
Orchestrator

HPC Job Mix

Operating  System

Jo
b 

1

Login VM

Jo
b 

2

Jo
b 

3

Jo
b 

4

VM 
configuration

toolkit

U
til

iza
tio

n 
Ag

gr
eg

at
or

Ad
m

is
si

on
 c

on
tr

ol
 a

nd
 L

oa
d 

Ba
la

nc
in

g

Seamless interaction with integration 

Dynamic VM Provisioning 

Expose Real-time Cluster Statistics 

Leverage Instant Clone 



• Need to be thread-safe
• Schedulers are multi-threaded 

and are thread-safe.

 MULTIVERSE DESIGN

40

• Parse Job Requirements
• Customized VM launch
• Map Jobs to VMs (concurrency)

We built a thread safe finite-state machine 
using linux flock utility.



IMPLEMENTATION ON SLURM

41

Each phase corresponds to a plugin

System Daemons ensure concurrency

Spank Plugins for VM Cleanup 



EVALUATION SETUP
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Experiment Setup 
• 220 core HPC cluster.  
• 1TB Memory 
• 72TB shared datastore

    Workload  
• HPCC, HPL, RandomAccess.  
• Small (2vCPU, 4GB), Large 

(8vCPU, 16GB)  
• 50 job/s, 100jobs/s
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Full Clone

Instant Clone

~3x Fast!

MAJOR RESULTS



MAJOR RESULTS
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~1.5x more throughput. 
~40% higher CPU utilization.

Full CloneInstant Clone



• Dynamic DAGs in 
Serverless

• Machine Learning 
Training Costs

• Stateful Serverless 
Storage Costs

SHORT TERM

FUTURE RESEARCH DIRECTIONS

46

• Online Real-time 
training using serverless

• Federated learning in 
Public Cloud

• HPC in public cloud

LONG TERM
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