
Fifer: Tackling Resource Underutilization
in the Serverless Era

Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,
Mahmut Kandemir, Chita Das

ACM/IFIP Middleware’21
Dec 10, 2020

EXECUTIVE SUMMARY

2

TENANTS PROVIDERS

EXECUTIVE SUMMARY

2

TENANTS PROVIDERS
Faster Response

Times Serverless Functions

EXECUTIVE SUMMARY

2

TENANTS PROVIDERS
Faster Response

Times Serverless Functions

SLO violations
Cold-starts

Over Provisioning &
Underutilization

EXECUTIVE SUMMARY

2

TENANTS PROVIDERS
Faster Response

Times Serverless Functions

SLO violations
Cold-starts

Over Provisioning &
Underutilization

Guarantee SLOs Leverage Application Info
Fully Utilize

Serverless Function Chains

Image Classification Question AnsweringNatural Language
Processing

Stages in Intelligent Personal Assistant (IPA)

Containers for Each Microservice

Users

Request

Response

1500ms

3

Serverless Function Chains

Image Classification Question AnsweringNatural Language
Processing

Stages in Intelligent Personal Assistant (IPA)

Containers for Each Microservice

Users

Request

Response

1500ms

Container
Cold Starts

3

Serverless Function Chains

Image Classification Question AnsweringNatural Language
Processing

Stages in Intelligent Personal Assistant (IPA)

Containers for Each Microservice

Users

Request

Response

1500ms

Container
Cold Starts

3

• Container creation

• Model fetch time

Serverless Function Chains

Image Classification Question AnsweringNatural Language
Processing

Stages in Intelligent Personal Assistant (IPA)

Containers for Each Microservice

Users

Request

Response

1500ms

Container
Cold Starts

3

• Container creation

• Model fetch time

Impact of cold-starts on performance?

Why Cold Starts are bad?
Cold Start (First invocation) Warm Start (Concurrent Invocations)

4

Why Cold Starts are bad?

Cold starts contribute ∼2000 to 7500 ms on top of
execution time

Cold Start (First invocation) Warm Start (Concurrent Invocations)

4

Why Cold Starts are bad?

Cold starts contribute ∼2000 to 7500 ms on top of
execution time

Cold Start (First invocation) Warm Start (Concurrent Invocations)

4

How providers handle cold starts?

Current Serverless Platforms

5

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18

• Spawn new containers if existing containers are busy.
➡ Leads to SLO violations due to cold-starts.
➡Many idle containers. Wasted power and energy.

Current Serverless Platforms

5

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18

• Spawn new containers if existing containers are busy.
➡ Leads to SLO violations due to cold-starts.
➡Many idle containers. Wasted power and energy.

• Employing static queuing of requests on fixed pool of
containers
➡Leads to SLO violations due to queuing.

Current Serverless Platforms

5

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18

• Spawn new containers if existing containers are busy.
➡ Leads to SLO violations due to cold-starts.
➡Many idle containers. Wasted power and energy.

• Employing static queuing of requests on fixed pool of
containers
➡Leads to SLO violations due to queuing.

• Not aware of application execution times and response latency
requirements.
➡ Colossal container overprovisioning.

Current Serverless Platforms

5

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18

• Spawn new containers if existing containers are busy.
➡ Leads to SLO violations due to cold-starts.
➡Many idle containers. Wasted power and energy.

• Employing static queuing of requests on fixed pool of
containers
➡Leads to SLO violations due to queuing.

• Not aware of application execution times and response latency
requirements.
➡ Colossal container overprovisioning.

Current Serverless Platforms

5

Wang et al, Peeking behind the curtains of Serverless Platforms in ATC’18

How can we do better?

6

Djinn and Tonic- DNN Inference Benchmark Suite-ISCA’15

Application Characterization

6

SLO’s usually
within 1.5s

Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning Inference Services, Middleware’17

Djinn and Tonic- DNN Inference Benchmark Suite-ISCA’15

Application Characterization

• Multi-staged applications have ample slack.

6

SLO’s usually
within 1.5s

Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning Inference Services, Middleware’17

Djinn and Tonic- DNN Inference Benchmark Suite-ISCA’15

Application Characterization

• Multi-staged applications have ample slack.

• Execution times of each function is predictable.

6

SLO’s usually
within 1.5s

Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning Inference Services, Middleware’17

Djinn and Tonic- DNN Inference Benchmark Suite-ISCA’15

Per Stage

Application Characterization

• Multi-staged applications have ample slack.

• Execution times of each function is predictable.

6

SLO’s usually
within 1.5s

Swayam: Distributed Autoscaling to Meet SLAs of Machine Learning Inference Services, Middleware’17

Djinn and Tonic- DNN Inference Benchmark Suite-ISCA’15

Per Stage

How to exploit the slack and execution
time predictability?

Application Characterization

O
ve

rh
ea

ds
7

Slack aware queuing

O
ve

rh
ea

ds

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

7

Slack aware queuing

O
ve

rh
ea

ds

Slack

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

7

Slack aware queuing

O
ve

rh
ea

ds

Slack

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

To
ta

l =
 1

0
C

on
ta

in
er

s

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

SL
A

12
00

(b) Request-Batching RM

Cold
starts

4 Containers

1 1

4 Containers
3 3

4 4

6 6

2 ContainersCold
starts

7

Slack aware queuing

O
ve

rh
ea

ds

Slack

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

To
ta

l =
 1

0
C

on
ta

in
er

s

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

SL
A

12
00

(b) Request-Batching RM

Cold
starts

4 Containers

1 1

4 Containers
3 3

4 4

6 6

2 ContainersCold
starts

7

Slack aware queuing

O
ve

rh
ea

ds

Slack

Exploiting Slack to Queue requests can save
up to 14 containers.

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

To
ta

l =
 1

0
C

on
ta

in
er

s

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

SL
A

12
00

(b) Request-Batching RM

Cold
starts

4 Containers

1 1

4 Containers
3 3

4 4

6 6

2 ContainersCold
starts

7

Slack aware queuing

O
ve

rh
ea

ds

Slack

Exploiting Slack to Queue requests can save
up to 14 containers.

To
ta

l =
 2

4
C

on
ta

in
er

s

8 Containers

SL
A

St
ag

e
1

St
ag

e
2

St
ag

e
3

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

3

4

1

2

3

6

9

12
00

O
ve

rh
ea

ds

8 Containers

(a) Baseline RM

Cold
starts

8 Containers
Cold
starts

To
ta

l =
 1

0
C

on
ta

in
er

s

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

Time (ms)

SL
A

12
00

(b) Request-Batching RM

Cold
starts

4 Containers

1 1

4 Containers
3 3

4 4

6 6

2 ContainersCold
starts

7

Slack aware queuing

How to allocate Slack?

Slack Allocation

Slack Allocation

Slack = 700ms

IMC (45ms)

NLP (2ms)

QA (51ms)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

IMC

NLP

QA

O
ve

rh
ea

ds

Slack Allocation

Slack = 700ms

IMC (45ms)

NLP (2ms)

QA (51ms)

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

IMC

NLP

QA

O
ve

rh
ea

ds

Slack Allocation

Slack = 700ms

IMC (45ms)

NLP (2ms)

QA (51ms)

Proportional Slack
=

Equal Containers

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

IMC

NLP

QA

O
ve

rh
ea

ds

Slack Allocation

Slack = 700ms

IMC (45ms)

NLP (2ms)

QA (51ms)

Proportional Slack
=

Equal Containers

What about Cold Starts?

Load Prediction

9

Reactive Scaling +

Prediction Model

10

Prediction Model

10

Prediction Model

LSTM is the best with least RMSE

10

Prediction Model

LSTM is the best with least RMSE

Proactive container provisioning using LSTM

10

Prediction Model

LSTM is the best with least RMSE

Proactive container provisioning using LSTM

10

Fifer: Stage-aware Proactive container
provisioning and management of

function chains

Fifer: Stage-aware Proactive container
provisioning and management of

function chains

Stage-aware proportionate
queuing

Fifer: Stage-aware Proactive container
provisioning and management of

function chains

Stage-aware proportionate
queuing

Queuing delay-based
Reactive container scaling

Fifer: Stage-aware Proactive container
provisioning and management of

function chains

Stage-aware proportionate
queuing

Proactive container scaling

Queuing delay-based
Reactive container scaling

IMPLEMENTATION

12

B_Size
#Containers
Create_time
Comp_Time
Sched_time

Worker-1

Worker-2

Worker-4

Worker-3

Container Image Repository

C
lu

st
er

 S
ta

tis
tic

s

K
ub

er
ne

te
s

C
lu

st
er

Kubernetes

Fifer
Management
Framework

Query every heartbeat

Schedule
Containers

Load Balancer

Stage-1

Stage-2

Stage-3

Request arrival rate

Hardware Config

CPU
Xeon
gold

Sockets 2

Core 16

Threads 2

Clock 2.8Ghz

DRAM 192GB

SLO violations and Containers

13

SLO violations and Containers

Better

13

SLO violations and Containers

Better

• #Containers normalized to
baseline

• Fifer is spawns 20% less
containers

13

SLO violations and Containers

Better

• #Containers normalized to
baseline

• Fifer is spawns 20% less
containers

• SLO violations normalized to
baseline

• Fifer is similar to baseline with
fewer containers

13

Utilization and Energy

14

Utilization and Energy

Better • Average #Requests
executed per container
(RPC).

• Fifer improves container
utilization by 34%

14

Utilization and Energy

Better

Better • Average #Requests
executed per container
(RPC).

• Fifer improves container
utilization by 34%

• Energy consumption
normalized to Bline.

• Fifer is 31% more energy
efficient

14

• Details of the workload used.
• Evaluated schemes and policies.
• Details about LSTM training.

