
JASHWANT RAJ GUNASEKARAN

MICHAEL CUI† , PRASHANTH THINAKARAN* , JOSH SIMONS† , MAHMUT T. KANDEMIR* , CHITA R. DAS*
† VMWARE, * PENN STATE

Multiverse: Dynamic VM Provisioning for
Virtualized High Performance Computing Clusters

21st IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

•Introduction
•Challenges & Motivation
•Design
•Implementation
•Evaluation & Experimentation
•Results and Discussion
•Conclusion

AGENDA

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

High Performance Computing

3

Virtualization for HPC

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Virtualized HPC

 Heterogeneous Compute.

• Flexibility and Fault tolerance.

• Security and reproducibility.

How traditional HPC schedulers handle
virtualization?

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Challenges with HPC schedulers

5

HPC Schedulers Focus on throughput and utilization

• Batch Jobs are usually long
running

• Fair sharing and fixed node
reservations

Poor interaction with VM Orchestrators.
Results in Underutilization.

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

• Static Provisioning

• High provisioning times

• Poor Load Balancing

No information about physical
cluster resources

Why Underutilization?

6

How to solve this problem?

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Multiverse Design

7

Seamless interaction with integration

Expose Real-time Cluster Statistics

Leverage Instant Clone

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

 Customize VM size

 Customize software/libs

 Pre-create a set of VM templates
for different users/jobs

Design Specifications
Job submission

Resource selection

Job allocation

Job execution

Job termination

Parse and collect job resource requirements, e.g.,
#cores and memory

Force job to wait til VM is created with the
resource specification

Launch job to the correct VM (concurrency)

8

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

 Need to be thread-safe

 Schedulers are multi-threaded and are thread-safe

 Finite state machine

Design Specification

S0 queued spawning spawned allocated finished

Job submit Initiate VM clone VM clone finish Job launch Job finish

Use features parameters
to enforce correct job-to-

vm matching

Each job is assigned a
unique ID

9

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

 A light-weight DB can be used to maintain physical resource utilization info

 Node capacity can be populated by querying VM orchestrator

 Metrics include CPU/memory/#VMs, etc

 DB is queried before spawning new VMs for AC and LB

 When resources are not available, jobs remain in queued state

 DB updates are triggered by VM clone/destroy events

 AC can be customized by specifying an admin parameter – over-commitment ratio

 LB policies are customizable with different algorithms

 Assumes Dynamic Resource Selection is not available (e.g., Scale-out vSphere Edition)

Admission Control & Load Balancing

10

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

 We chose Slurm which is popular and open-source

 Slurm plug-in APIs allow to customize Slurm dynamically without changing Slurm code

 A Slurm plug-in is a dynamically linked code object which is loaded explicitly at run time by the Slurm libraries

 Our choice of Slurm plug-ins are inspired by existing works

 Integrate Slurm with Singularity containers: https://git.biohpc.swmed.edu/biohpc/singularity/tree/utsw/src/slurm

 Extend Slurm functionality: https://github.com/grondo/slurm-spank-plugins/blob/master/slurm-spank-plugins.spec

 Elasticluster: https://github.com/elasticluster/elasticluster

 Main challenges lie in the need to restart Slurm controller to add new VMs to compute nodes while preserving existing job states

 5 plug-ins, 2 daemons, and locks for synchronization

Implementation Overview

11

https://slurm.schedmd.com/plugins.html
https://git.biohpc.swmed.edu/biohpc/singularity/tree/utsw/src/slurm
https://github.com/grondo/slurm-spank-plugins/blob/master/slurm-spank-plugins.spec
https://github.com/elasticluster/elasticluster

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Implementation on Slurm

12

Job submit plug-in

 Called by Slurm controller right after job submission
 Log or modify job configuration parameters

 Job name, #cpus, memory, #nodes, submit time
 Establish a 1:1 mapping between each job and a

temporary directory

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwi3pMGH1JrqAhUs8-AKHcZGA8cQFjAAegQIAhAB&url=https%3A%2F%2Fslurm.schedmd.com%2Fjob_submit_plugins.html&usg=AOvVaw0-wmEh-ti14SrMvGuBxmU8

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Implementation on Slurm

13

Scheduler plug-in

 Called after the job submit plug-in
 Change job priority to change order in job queue
 override the slurm_sched_p_initial_priority function
 Add the job to an internal queue

https://slurm.schedmd.com/schedplugins.html

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Implementation on Slurm

14

Resource selection plug-in

 Called after the scheduler plug-in
 Test resource availability and select resources
 Support various resource selection algorithms
 cons_res, cray_aries, linear

https://slurm.schedmd.com/selectplugins.html

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Implementation on Slurm

15

Allocate job plug-in

 Called after the resource select plug-in

 Allocate job to selected resources

 We use it to allocate jobs to VMs

 Change both job and node features so that Slurm can
uniquely match them

 Release job from pending/hold state

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Implementation on Slurm

16

SPANK plug-ins
 Slurm Plug-in Architecture for Node and job (K)control
 Invoked in five “contexts”
 Dynamically modify job runtime behavior

 Mark VM as “down” to prevent future use
 Copy job output and error logs to master and login

nodes
 Notify job_completion daemon of job completion

https://slurm.schedmd.com/spank.html

Implementation on Slurm

17

VM launch daemon

 Start VM cloning according to job config in a background
process (non-blocking)

 Periodically check VM cloning progress
 Re-start or cancel VM cloning if failure
 Add new VMs to Slurm config file and restart Slurm

controller

Job completion daemon

 Periodically check for completed jobs
 Remove VM from Slurm config file
 Delete job configuration details
 Delete VM

Admission Control & Load Balancing

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

 Implemented a python API to query vCenter for host utilization metrics
 Used an sqlite DataBase to store current system status in the Slurm controller
 If resource is not available for a job, it will be delayed and stored in a queue

 To avoid starvation, we ensure newly incoming jobs are queued behind delayed
jobs

 For LoadBalancer, we implemented two simple policies:
First available
Random selection among compatible hosts

18

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Evaluation

• Compare between full clone and instant
clone

• Job run time

• Overhead, e.g., cloning time, VM config
time, Slurm restarting time, etc

Experimentation & Evaluation

19

Experiment Setup
• 220 core HPC cluster.
• 1TB Memory
• 72TB shared datastore

Workload
• HPCC, HPL, RandomAccess.
• Small (2vCPU, 4GB), Large

(8vCPU, 16GB)
• 50 job/s, 100jobs/s

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Results: Overall time breakdown

Full clone

Instant clone

20

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Results: Overheads breakdown

Full clone

Instant clone

21

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

Results: Utilization and Throughput

22

•1.5x more throughput.
•40% higher CPU utilization.

Full cloneInstant clone

JASHWANT RAJ GUNASEKARAN, CCGRID’2021

• Design a generic VM-per-job model to integrate HPC scheduler with VM
orchestrator.

• Develop policies to negotiate physical resources between scheduler and
orchestrator.

• Expose system state to develop an admission control system and a
dynamic load balancer.

Concluding Summary

23

	Multiverse: Dynamic VM Provisioning for Virtualized High Performance Computing Clusters
	AGENDA
	High Performance Computing
	Virtualized HPC
	Challenges with HPC schedulers
	Why Underutilization?
	Multiverse Design
	Design Specifications
	Design Specification
	Admission Control & Load Balancing
	Implementation Overview
	Implementation on Slurm
	Implementation on Slurm
	Implementation on Slurm
	Implementation on Slurm
	Implementation on Slurm
	Implementation on Slurm
	Admission Control & Load Balancing
	Experimentation & Evaluation
	Results: Overall time breakdown
	Results: Overheads breakdown
	Results: Utilization and Throughput
	Concluding Summary
	Slide Number 24

